Future Generation Computer Systems 37 (2014) 64-75

Contents lists available at ScienceDirect & =
FIGICIS
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

g

@ CrossMark

Architectural investigation of matrix data layout on
multicore processors

Minwoo Kim, Won Woo Ro*

School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, Republic of Korea

HIGHLIGHTS

We propose the optimal matrix layout for data-intensive parallel matrix operations.

We achieve reduced data latency through the optimized canonical data layout.

Loop transformation using “tiling” is used for efficient parallel algorithms.

The proposed optimized canonical data layout outperforms the existing block data layout.

ARTICLE INFO ABSTRACT

Article history:

Received 16 April 2012

Received in revised form

21 August 2013

Accepted 13 October 2013
Available online 25 October 2013

Keywords:

Matrix data layout
Multicore architecture
Multilevel cache structure
Parallel algorithm

Tiling algorithm

Many practical applications include matrix operations as essential procedures. In addition, recent studies
of matrix operations rely on parallel processing to reduce any calculation delays. Because these operations
are highly data intensive, many studies have investigated work distribution techniques and data access
latency to accelerate algorithms. However, previous studies have not considered hardware architectural
features adequately, although they greatly affect the performance of matrix operations. Thus, the present
study considers the architectural characteristics that affect the performance of matrix operations on real
multicore processors. We use matrix multiplication, LU decomposition, and Cholesky factorization as the
test applications, which are well-known data-intensive mathematical algorithms in various fields. We
argue that applications only access matrices in a particular direction, and we propose that the canonical
data layout is the optimal matrix data layout compared with the block data layout. In addition, the
tiling algorithm is utilized to increase the temporal data locality in multilevel caches and to balance
the workload as evenly as possible in multicore environments. Our experimental results show that
applications using the canonical data layout with tiling have an 8.23% faster execution time and 3.91%

of last level cache miss rate compared with applications executed with the block data layout.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A large number of applications in various fields such as sci-
entific calculation [1], signal processing [2], image processing [3],
and network coding [4,5] use matrix operations as core proce-
dures. Many matrix operations include data-intensive processes,
especially when managing large matrices, and numerous stud-
ies have been conducted to optimize various matrix operations
[6-17]. However, many of these methods have limitations when
utilizing modern multicore environments. Several studies have
proposed parallel algorithms but they did not provide experimen-
tal results [6,7,18], partly because multicore environments were
not available when these studies were conducted. Other parallel al-
gorithms were evaluated on multiprocessor systems [19,20]. Many

* Corresponding author. Tel.: +82 2 2123 5769; fax: +82 2 313 2879.
E-mail addresses: kenstars@yonsei.ac.kr (M. Kim), wro@yonsei.ac.kr (W.W. Ro).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.10.020

studies have also focused on a limited number of the features that
affect the performance of matrix operations, e.g., the matrix data
layout and memory latency [10,21-23], work distribution tech-
niques, and parallel algorithm [16,17,24-26]. In addition, the ideas
proposed were verified using a number of theorems and lemmas,
with proofs and related experimental results [27]. However, the
numerical analyses did not scale well with the experimental re-
sults because the numerical analyses assumed that the matrices
were accessed evenly in two directions, whereas experimental ap-
plications only access the matrices in a specific order, i.e., the row-
major or column-major order.

Given the weaknesses of previous studies, we considered
the multicore architecture and the application-optimized data
layout used in data-intensive matrix operations. A previous study
claimed [27] that the use of the tiling algorithm with a block data
layout is the best way to enhance the translation lookaside buffer
(TLB) and cache performance, but we argue that this no longer
applies to multicore and multilevel cache architectures. Thus,
we determined the best type of matrix layout for use in matrix

http://dx.doi.org/10.1016/j.future.2013.10.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.10.020&domain=pdf
mailto:kenstars@yonsei.ac.kr
mailto:wro@yonsei.ac.kr
http://dx.doi.org/10.1016/j.future.2013.10.020

M. Kim, W.W. Ro / Future Generation Computer Systems 37 (2014) 64-75 65

operations, such as matrix multiplication, LU decomposition, and
Cholesky factorization. The individual operands in these matrix
operations have unique access directions, so using a canonical data
layout to minimize the spatial locality might help to optimize the
data access latency.

The tiling algorithm is used to change the matrix access order
by loop transformation to enhance the cache performance [28]. The
tiling algorithm searches for an improved temporal locality based
on frequent data reuse [29]. In the present study, we also exploited
the advantages of the tiling algorithm for workload distribution
on multiple processors, as well as for improving the cache perfor-
mance in multicore environments. The efficient utilization of the
multicore architecture is considered essential, which means that
an effective load distribution is an important issue that affects the
overall performance of applications.

Modern multicore processors are equipped with a private L1
cache, which may require specific sizes of tiles for optimum per-
formance. In addition, the optimal tile size leads to a data prefetch-
ing effect, which further improves the cache performance. Thus, for
multithreaded processing in a multicore environment, we focused
on load balancing and optimal tile size to accelerate the large-
volume data-intensive matrix operation process.

The main contributions of this study are summarized in the
following bullet points.

e We performed a mathematical analysis of the cache perfor-
mance with various matrix data layouts. We argue that the lay-
out transformation improves the cache performance compared
with the row-major data layout. We analyzed the layout trans-
formation overheads and determined the optimal type of ma-
trix data layout.

e We demonstrated the effect of the tiling algorithm, which trans-
forms loop iterations to increase the cache performance based
on a high data reuse rate. We tried to improve the performance
of large-scale matrix operations with a canonical data layout
based on an efficient tile access order.

e The multicore processor architecture and parallel processing
can accelerate the speed of matrix operations using an efficient
work distribution technique. The effect of data prefetching on
the multilevel caches of multicore processors is also considered
to be important for canonical data layouts.

Three matrix operations were tested in this study, which are
widely used in scientific and engineering applications and as test
benches: matrix multiplication (MM), LU decomposition (LU), and
Cholesky factorization (CF) [7-17,27]. The processing of these
operations is highly data-intensive because the operand matrices
are large and the data are accessed repeatedly during multiple
iterations. The execution time and multilevel cache performance
were evaluated on multicore systems and the canonical layout
was effective for all three applications. The benefits of multicore
systems were also analyzed based on the first and intermediate
level cache miss rates, as well as the last level cache miss rates.

2. Related work

Park et al. first showed that combining the block data layout
with the tiling algorithm enhances the cache performance and re-
duces TLB misses [27]. They also showed the effectiveness of this
approach by performing simulations of several applications with
matrix operations. The SimpleScalar simulator was used to evalu-
ate the cache performance and several actual single-core platforms
were also used to measure the real-world execution time.

The data locality problem was first discussed in the 1990s by
Wolf et al. in [30]. They introduced several loop transformation al-
gorithms, including tiling, which was utilized in the present study.

They also presented blocked algorithms, including matrix multi-
plication, and discussed their relationship with the cache perfor-
mance in [31]. Later, variations of loop tiling were introduced, such
as that in [29] by Parsa et al. and by Panda et al. [28].

In addition, some studies have tried to optimize the data
layouts, including array layouts to enhance the cache perfor-
mance [22,23,32-34]. In [23], Rivera et al. developed padding
techniques, including inter- and intra-variable padding, for per-
forming data layout transformations. Temam et al. developed a
copying technique where the data in an array was copied to a tem-
porary array, which delivered superior cache performance [34].
Manjikian et al. performed cache partitioning to logically divide
the cache into several parts where each part contained a single ar-
ray [32]. Kandemir et al. proposed the utilization of reuse vectors to
restructure data [22]. This technique is used mainly for data layout
transformations of arrays. Rather than utilizing a linear data lay-
out, which is familiar from the user’s perspective, nonlinear matrix
layouts were proposed by Chatterjee et al. [33]. This form of data
restructuring also enhances the memory performance.

Various studies have been conducted to accelerate matrix op-
erations, such as matrix multiplication, LU decomposition, and
Cholesky factorization [6-14,16,17]. A three-dimensional algo-
rithm was proposed by Agarwal et al., which distributed the matri-
ces in an efficient manner to achieve a balance between the loads
on each processor [16]. A task-parallel algorithm was introduced
by Hunold et al. [8], which separated work in a task-based man-
ner to reduce the communication overheads between processors.
Li et al. showed that parallel matrix multiplication can be accel-
erated by using a linear array with a reconfigurable pipelined bus
system (LARPBS), which enhanced the communication speed be-
tween processors [9]. Chatterjee et al. proposed a recursive array
layout to replace the row-major or column-major layout, which fa-
cilitated rapid matrix multiplication [10]. They presented five re-
cursive layout functions for three parallel matrix multiplication
algorithms. Van de Geijn et al. proposed a scalable implemen-
tation of matrix multiplication, which was also simpler than
previous methods [11]. This method accelerated the speed of
computation and it required less work space. Song et al. proposed
aruntime dynamic task scheduling method for linear algebra algo-
rithms, such as LU decomposition and Cholesky factorization [35],
where they implemented a task-based library to automate the
scheduling process of linear algebra algorithms using tiling. On the
other hand, Ltaief et al. implemented parallel tile algorithms for
two-sided linear algebra transformations such as Hessenberg and
bidiagonal reductions [36]. Three scheduling methods, i.e., static,
hand-coded dynamic, and SMP Superscalar, were implemented to
achieve a parallel algorithm. However, this tile algorithm for two-
sided transformations was unable to provide full reduction in a sin-
gle step.

Stone proposed a parallel algorithm that solved a tridiagonal
linear system of equations (including LU decomposition and
Cholesky factorization) [6]. Later, van de Vorst introduced a parallel
LU decomposition program based on a multiple instruction,
multiple data (MIMD) machine with message passing [7]. Agarwal
et al. proposed block algorithms for Cholesky factorization and a
parallel scheme [13], where the performance was evaluated using
an IBM 3090 Vector Facility. Buttari et al. exploited the parallelism
of Cholesky factorization, LU decomposition, and QR factorization
on multicore processors using the tiling algorithm [37]. Rothberg
et al. used a heuristic remapping of the matrix blocks to improve
the load distribution on each processor [17]. Ng et al. also overcame
memory bottlenecks by implementing supernodes using a parallel
algorithm for Cholesky factorization [14]. Recently, Venetis et al.
presented an LU decomposition algorithm, which was solved using
a many-core architecture with register tiling [12].

Kurzak et al. implemented parallel linear algebra operations
on several parallel programming frameworks [24], where they

Download English Version:

https://daneshyari.com/en/article/425866

Download Persian Version:

https://daneshyari.com/article/425866

Daneshyari.com

https://daneshyari.com/en/article/425866
https://daneshyari.com/article/425866
https://daneshyari.com

