
Future Generation Computer Systems 37 (2014) 148–161

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Adaptive parallel application resource remapping through the live
migration of virtual machines
Muhammad Atif a,∗, Peter Strazdins b

a National Computational Infrastructure, The Australian National University, Canberra, ACT, 0200, Australia
b Department of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 0200, Australia

h i g h l i g h t s

• We present a framework which deals with the issue of heterogeneity in clusters.
• Mathematical Model for performance prediction and migration of job within clusters.
• The framework is analyzed with comprehensive set of experiments (no simulations).
• Sensitivity analysis is provided to determine the impact of various parameters.
• Improve the throughput of a moderately heterogeneous compute farm by up to 25%.

a r t i c l e i n f o

Article history:
Received 15 April 2012
Received in revised form
14 May 2013
Accepted 28 June 2013
Available online 19 July 2013

Keywords:
Performance prediction
Virtualization
Heterogeneous clusters
Live migration
Cluster scheduling
Resource management

a b s t r a c t

In this paper we present ARRIVE-F, a novel open source framework which addresses the issue of
heterogeneity in virtualized compute farms, such as those hosted by a cloud infrastructure provider.
Unlike the previous attempts, our framework is not based on linear frequencymodels and does not require
source code modifications or off-line profiling. The heterogeneous compute farm is first divided into a
number of homogeneous sub-clusters. The framework then carries out a lightweight ‘online’ profiling of
the CPU, communication and memory subsystems of all the active jobs in the compute farm. From this, it
constructs a performance model to predict the execution times of each job on all the distinct sub-clusters
in the compute farm. Based upon the predicted execution times, the framework is able to relocate the
compute jobs to the currently best-suited hardware platforms such that the overall throughput of the
compute farm is increased. We utilize the live migration feature of virtual machine monitors to migrate
the job from one sub-cluster to another.

The prediction accuracy of our performance estimation model is over 80%. The implementation of
ARRIVE-F is lightweight, with an overhead of 3%. Experiments on a synthetic workload of scientific
benchmarks show that we are able to improve the throughput of a moderately heterogeneous compute
farm by up to 25%, with a time saving of up to 33%.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Compute farms, whether for research department clusters,
data centers, cloud infrastructure providers or supercomputing
facilities tend to become heterogeneous over time. This is due
to incremental extension over a period of time and/or particular
nodes being purchased for users with particular needs and the
relatively small price differences between these various options.
After couple of upgrade cycles, the compute farm becomes a
heterogeneous compute farm (HC) constituted of a federation of
homogeneous sub-clusters.

∗ Corresponding author. Tel.: +61 430 393863.
E-mail addresses: muhammad.atif@anu.edu.au (M. Atif),

peter.strazdins@anu.edu.au (P. Strazdins).

Parallel applications have varied computation and communica-
tion requirements depending on the domain and the nature of their
algorithms. For instance, some applications are floating point in-
tensive while others can be memory or communication intensive.
This diverse nature of applications results in varied execution time
in the compute farm due to the heterogeneity of the nodes.

On a heterogeneous cluster where only half of the nodes are
linked via an expensive high performance network, it is possible for
a parallel application that does little inter-node communication to
end up running on the nodes with the fast network, while another
application that would greatly benefit from that network is left to
run on a slower half of the cluster.

The issue of effective mapping (scheduling) of parallel appli-
cations onto such heterogeneous systems is therefore of great
interest to researchers. The problem is NP-complete [1] and sev-
eral research studies have addressed this problem by developing

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.028

http://dx.doi.org/10.1016/j.future.2013.06.028
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.028&domain=pdf
mailto:muhammad.atif@anu.edu.au
mailto:peter.strazdins@anu.edu.au
http://dx.doi.org/10.1016/j.future.2013.06.028


M. Atif, P. Strazdins / Future Generation Computer Systems 37 (2014) 148–161 149

heuristic techniques [1,2]. These heuristics require the scheduler
to be aware of the application characteristics and are static in na-
ture. This in turn requires the application programmer to profile
and analyze the application prior to job submission. The static na-
ture of this approach prevents dynamic load balancing within the
compute farm.

Another approach to address the computation and communi-
cation imbalance of the nodes in an HC is to adapt the parallel
application according to the heterogeneity of the compute farm.
Here, the parallel application is required to distribute computa-
tions unevenly to account for the varied speed and architecture
of processors [3,4]. The load balancing of such systems require a
considerable effort from the programmers perspective [5] and the
solutions are not generic in nature. In the case of workload, source
code changes are required, which is difficult and time consuming.
In order to load balance an application, the programmer is required
to determine the application’s performance characteristics. In both
cases, the allocation of nodes to a parallel job in an HC requires
some sort of performance modeling techniques. In performance
modeling, an application is profiled to gain an understanding of its
performance characteristics. The performance models are evalu-
ated on the different compute nodes and sub-networks to deter-
mine the expected speedups (or slowdowns) on various hardware
architectures/nodes.

Fine grained performance modeling is capable of reasonably
accurate prediction but the associated cost of profiling can be
very high in terms of the wall-clock time of the job [4,5]. Due
to these costs, these techniques must be applied to applications
in an ‘offline’ mode. The application or some of its iterations are
profiled on a set of hardware and scheduling decisions are based
on the resultant profile metrics. In the case of a workload change,
the application behavior changes and the application needs to be
profiled again.

In this paper, we present the design and results of our resource
remapping framework, which is able to exploit the heterogeneity
in a compute farm to improve throughput. We deal with this is-
sue of heterogeneity by breaking the heterogeneous compute farm
into a number of homogeneous sub-clusters. The runtime charac-
teristics of applications are determined with the combination of
hardware performance counters/units (PMUs) and theprofiling the
underlying communication and I/O library, in this case the profil-
ing interface to MPI (PMPI). This enables us to predict the perfor-
mance of the runningMPI applications on all the other sub-clusters
present in our heterogeneous compute farm. All this is done
without the need of changing the application binary or requiring
off-line profiling and analysis. We then propose the best-suited
sub-cluster for the compute job on the compute farm and migrate
the job to this sub-cluster to improve the overall throughput and
the averagewaiting time. For the jobmigration (or remapping), we
make use of the livemigration facility provided bymost virtualma-
chinemonitors. As concluded in [6,7], the benefits of virtualization
in HPC environments outweigh the potential overheads, namely
potentially slower communication and CPU overhead due to virtu-
alization. In the absence of virtualization, one can use the check-
point and restart facilities [8] in MPI implementations.

The rest of the paper is organized as follows: We briefly discuss
the related work in Section 2. We then present our theoretical
framework in Section 3. Implementation details are provided in
Section 4. Sections 5 and 6 detail our experiments and results.
Conclusions and future work are given in Section 9.

2. Related work

There is a significant amount ofwork related to this paperwhich
can be broadly divided into two categories: heterogeneity-aware
schedulers and heterogeneity-aware applications.

2.1. Heterogeneity-aware schedulers

A number of ‘static’ heterogeneous cluster scheduling solutions
have been proposedwhich try tomap the application processes on
the available compute nodes to improve the application’s runtime.
The general problem of optimally mapping parallel programs or
tasks to machines in a heterogeneous compute farm has been
shown to be NP-complete [1], and hence requires heuristics [1,9]
Braun et al. [2] have presented a detailed comparison of a number
of heuristics proposed earlier.1 However these heuristics have
a hard requirement of the estimated execution times of the
application on all the possible distinct compute nodes (processors).
This either requires the complete execution of the application
on all the possible compute nodes before scheduling or ‘offline’
performance estimation to predict the runtime of the application.
All of the subsequent work in the area is static in nature and
dynamic load balancing of the HC is missing in these frameworks.

Hsu et al. [10] have proposed Cloud Adaptive Dispatching (CAD)
for improving the performance of data intensive applications in
the heterogeneous cloud environment. CAD is able to arrange
inter-cluster communications across heterogeneous networks by
utilizing the LocalMessages Reduction (LMR) and RemoteMessage
Amplification (RMA) techniques. It is shown through simulations
that CAD can significantly improve the communication costs by
scheduling messages according to the characteristic of messages.

Katramatos et al. have proposed Cost/Benefit Estimating Ser-
vice (CBES) [4], the core of which is the hardware mapping op-
eration which compares and select the most beneficial hardware
mapping at the given time. CBES consists of a set of databases,
monitoring services and profiling tools divided into two cate-
gories: system-dedicated and application-dedicated. The system-
dedicated infrastructure is an ‘off-line’ phase and is used to create
a profile of the computing system. Once a system profile is gener-
ated, the system continuously monitors the resource status (load
information). The application-dedicated infrastructure is respon-
sible for generating communication and computation profiles of
the application. However, CBES bases its performance estimates on
CPU frequency and it cannot move jobs between the clusters once
dispatched.

2.2. Heterogeneity-aware applications

One approach proposed by several researchers [3,11] to address
the computation and communication imbalance of the nodes
in an HC is to adapt the parallel application according to the
heterogeneity of the compute farm. Here, the parallel application
is required to distribute computations unevenly to account for the
varied speed and architecture of processors [3]. These techniques
require source-code modifications. Charm++ [11], Prophet [12],
AppLeS [13] and EasyGrid [14] are examples of similar attempts
that require source codemodifications to build scheduling and load
balancing capabilities inside an application.

Charm++ [11] is amachine independent parallel programming
system. Charm++ programs are written in C++ with a few li-
brary calls and an interface description language for publishing
Charm++ objects. Charm++supports dynamic load balancing us-
ing object migration for irregular and dynamic applications. To
support MPI, Charm++ has its own layer known as AMPI (Adap-
tive MPI). However, it requires developers to rewrite MPI applica-
tions using Charm++ language specifications. AMPI is not MPI-2
complaint and requires the application developer to add support
for dynamic load balancing in the application. This requires the

1 Details and original citations of these heuristics can be found in the paper.



Download English Version:

https://daneshyari.com/en/article/425874

Download Persian Version:

https://daneshyari.com/article/425874

Daneshyari.com

https://daneshyari.com/en/article/425874
https://daneshyari.com/article/425874
https://daneshyari.com

