Future Generation Computer Systems 37 (2014) 162-177

Contents lists available at ScienceDirect 2 = ;
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Dynamic tuning of the workload partition factor and the resource
utilization in data-intensive applications

P .

® CrossMark

Claudia Rosas**, Anna Sikora?, Josep Jorba b Andreu Moreno¢, Antonio Espinosa®,

Eduardo César®

2 Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
b Estudis d’Informatica, Multimedia i Telecomunicacio, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
€ Escola Universitaria Salesiana de Sarria, 08017 Barcelona, Spain

HIGHLIGHTS

A methodology to improve performance in data-intensive applications has been designed.
It adapts at run time the workload partition factor and the number of resources to be used.
Adaptation of the partition factor enables load balancing and overall time reduction.
Adaptation of the number of resources used enables execution without large idle times.
Obtained results using real data-intensive applications are encouraging and positive.

ARTICLE INFO

Article history:

Received 15 April 2012

Received in revised form

23 October 2013

Accepted 3 December 2013
Available online 14 December 2013

Keywords:

Load balancing

Dynamic tuning
Data-intensive applications
Divisible Load Theory (DLT)

ABSTRACT

The recent data deluge needing to be processed represents one of the major challenges in the compu-
tational field. This fact led to the growth of specially-designed applications known as data-intensive ap-
plications. In general, in order to ease the parallel execution of data-intensive applications input data is
divided into smaller data chunks that can be processed separately. However, in many cases, these appli-
cations show severe performance problems mainly due to the load imbalance, inefficient use of available
resources, and improper data partition policies. In addition, the impact of these performance problems
can depend on the dynamic behavior of the application.

This work proposes a methodology to dynamically improve the performance of data-intensive appli-
cations based on: (i) adapting the size and the number of data partitions to reduce the overall execution
time; and (ii) adapting the number of processing nodes to achieve an efficient execution. We propose to
monitor the application behavior for each exploration (query) and use gathered data to dynamically tune
the performance of the application. The methodology assumes that a single execution includes multiple
related queries on the same partitioned workload.

The adaptation of the workload partition factor is addressed through the definition of the initial size
for the data chunks; the modification of the scheduling policy to send first data chunks with large pro-
cessing times; dividing of the data chunks with the biggest associated computation times; and joining
of data chunks with small computation times. The criteria for dividing or gathering chunks are based on
the chunks’ associated execution time (average and standard deviation) and the number of processing
elements being used. Additionally, the resources utilization is addressed through the dynamic evaluation
of the application performance and the estimation and modification of the number of processing nodes
that can be efficiently used.

We have evaluated our strategy using as cases of study a real and a synthetic data-intensive applica-
tion. Analytical expressions have been analyzed through simulation. Applying our methodology, we have
obtained encouraging results reducing total execution times and efficient use of resources.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, one of the biggest challenges in the computational

* Corresponding author. Tel.: +34 934137244.
E-mail addresses: crosas@caos.uab.es (C. Rosas), ania@caos.uab.es (A. Sikora),
jiorbae@uoc.edu (J. Jorba), amoreno@euss.cat (A. Moreno), aespinosa@caos.uab.es
(A. Espinosa), eduardo@caos.uab.es (E. César).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.12.002

field is the continuous growth of data that needs to be processed.
The data flow coming from sensors, results of biological and phys-
ical experiments [1], and even from the information generated by

http://dx.doi.org/10.1016/j.future.2013.12.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.12.002&domain=pdf
mailto:crosas@caos.uab.es
mailto:ania@caos.uab.es
mailto:jjorbae@uoc.edu
mailto:amoreno@euss.cat
mailto:aespinosa@caos.uab.es
mailto:eduardo@caos.uab.es
http://dx.doi.org/10.1016/j.future.2013.12.002

C. Rosas et al. / Future Generation Computer Systems 37 (2014) 162-177 163

users, are surpassing the capacities of the systems and algorithms
recently designed. This led to a new type of applications known as
data-intensive applications [2], or big-data computing [3].

In the era of data-intensive applications, computational sys-
tems are not only intended to compute but also to store and man-
age data. Given the current volume of data, those tasks increase the
challenge and complexity of developing a suitable solution. More-
over, the efficient data processing is not only a matter of having a
large number of processing units because it also depends on char-
acteristics of the workload of the application.

In order to improve performance, there are many studies that
have obtained good results, ranging from approaches that analyze
the effectiveness of /O systems, to the design of appropriate strate-
gies to define and access data structures [4]. In many cases, it has
been necessary to divide the workload of data-intensive applica-
tions into smaller data chunks (according to Divisible Load Theory,
DLT [5]) to ensure that the workload of the application can be man-
ageable. This has been done to reduce the size of the workload and
enable parallelism, but once the workload has been divided, other
issues rise like those related to disk access or load balancing.

The execution of data-intensive applications that involves a
large number of queries or iterations, may lead to variations in the
overall execution time between iterations. For this reason, perfor-
mance analysis and load balancing techniques must be adapted to
particular characteristics of the application. In most cases, given
the variability between (or within) iterations, performance analy-
sis must be carried out at run time. This is an extremely complex
process because it is carried out during the execution of the ap-
plication without incurring in excessive overheads. If not, the pro-
posed solution may be obsolete from one iteration to the other.

Most load balancing methods, such as factoring [6,7], are based
on the idea of distributing the workload of the application in
chunks of decreasing size. For the purpose of improving total com-
putation time of scientific applications, these methods try to de-
termine a good partition factor to obtain the chunks. When doing
this, parameters such as computation time, communication time,
and overall performance of the application are taken into consid-
eration.

This work proposes a methodology that dynamically identifies
and tunes load imbalances in parallel data-intensive applications.
This proposal is oriented to: applications that perform several re-
lated explorations or queries' on a large workload; and the possi-
bility of arbitrarily dividing or concatenating the workload of the
application into data chunks of different size. These assumptions
are sound because large-scale data processing usually consists on
launching several related explorations on the data, and processing
can be performed on data chunks of arbitrary size.

To improve performance in parallel data-intensive applications
with arbitrarily divisible workloads, our methodology considers:
(i) the adaptation of the partition factor for the workload to reduce
the overall execution time and avoid load imbalances; and (ii) the
modification of the number of processing nodes that can be used
efficiently. This proposal works for homogeneous clusters and uses
an application performance model that allows for dynamically ad-
justing the tuning parameters according to the current application
behavior.

The methodology is based on monitoring the computation time
of generated data chunks to determine the order in which they
should be scheduled in future explorations. The proposal includes
the dynamic division and gathering of data chunks (when the par-
titioning cost is low); and the possibility of dynamically choosing
among previously generated partitions (when the partition cost is
too high). In both cases, the calculation of the partition factor will
take into consideration the communication cost, memory use, and

1 We consider terms: exploration, query and iteration as synonyms; and they
may be used interchangeably along this work.

the number of available computing nodes (besides the computa-
tion time).

Our methodology assumes that a single execution includes mul-
tiple related explorations on the same partitioned workload. Thus,
previously collected data for one exploration can be used to dy-
namically adapt the number of resources (processing nodes) for
subsequent explorations. As our method is based on the execu-
tion of applications in homogeneous clusters of workstations, the
computation capacity is constant and, in most cases, the disk and
network latency are stable. Moreover, in order to make easier the
initial design we used a shared nothing [8] processing approach.
Under this approach, each node (consisting of processor, local
memory, and disk resources) shares nothing with other nodes in
the cluster.

Summarizing, our strategy proposes:

(a) generating multiple representative workload partitions prior
to the execution of the application when the cost of partition-
ing data is too high;

(b) monitoring the computation time of every exploration or query
on every data chunk;

(c) ordering and allocation of data chunks along the execution
of the application according to their associated computation
times;

(d) tuning of the partition factor of the data chunks with the
highest (partitioning) and lowest (grouping) associated com-
putation times according to the observed efficiency (relation
between computation time and the number of computation
nodes);

(e) distributing newly generated data chunks in subsequent explo-
rations;

(f) estimating the number of processing nodes to be effectively
used by the application.

The evaluation of our proposal has been carried out in a real and
widely used data-intensive application: the computation/data-
intensive bioinformatics tool Basic Local Alignment Sequence Tool
(BLAST) [9], as well as on a distributed merge sort. Results obtained
from both applications are encouraging in terms of total execution
time reduction and the efficient use of resources.

Moreover, an analytical simulator has been used to evaluate the
analytical expressions of the methodology. These expressions are
used to estimate the modifications in the size of the data chunks
and in the number of processing nodes to be used. In order to
analyze the behavior of the methodology we used the simulation
for a wider range of scenarios.

The rest of the paper is organized as follows. First, Section 2
provides an overview of related work. Next, Section 3 describes
the proposed methodology for balancing the load and improving
performance of data-intensive applications. Section 4 shows the
most relevance characteristics of the selected scenarios to eval-
uate our methodology: (i) a real data-intensive application, the
bioinformatics tool BLAST; (ii) a synthetic application based on a
distributed sorting algorithm; and (iii) an analytical simulator of
data-intensive applications. In addition, Section 4 explains the rea-
sons for using these applications to test the proposed methodology.
Section 5 where the experimental evaluation is described and re-
sults are discussed. Finally, Section 6 shows the conclusions and
outlines future work.

2. Related work

A divisible workload is such that can be divided into several in-
dependent pieces or chunks of arbitrary size to be processed in par-
allel by a set of compute nodes. The Divisible Load Theory (DLT) [5]
was introduced in the late 1980s. Later on, DLT has branched in
many new directions covering scheduling problems and perfor-
mance modeling for various types of computational environments,
such as Grid and Cloud systems [10], systems with memory limi-
tations [11] or with computation time restrictions [12].

Download English Version:

https://daneshyari.com/en/article/425875

Download Persian Version:

https://daneshyari.com/article/425875

Daneshyari.com

https://daneshyari.com/en/article/425875
https://daneshyari.com/article/425875
https://daneshyari.com

