Future Generation Computer Systems 37 (2014) 212-231

Contents lists available at ScienceDirect o e
Future Generation Computer Systems —
journal homepage: www.elsevier.com/locate/fgcs - —
Semantic-based Structural and Content indexing for the efficient @Cmsmrk

retrieval of queries over large XML data repositories
Norah Saleh Alghamdi*, Wenny Rahayu, Eric Pardede

Department of Computer Science and Computer Engineering, La Trobe University, Australia

HIGHLIGHTS

We exploit the semantics of XML Schema and data in building our index.

We trim search space using an object-based intersection technique of large data.
We eliminate irrelevant portions of data by discarding and irrelevant objects.
We prove the efficiency based on measuring CPU Cost and the scalability.

We show the high precision and recall of query results.

ARTICLE INFO

Article history:

Received 19 April 2013
Received in revised form

10 October 2013

Accepted 17 February 2014
Available online 11 March 2014

Keywords:

Query optimization
Index

Query processing
Objects

Semantic

XML

Twig query

ABSTRACT

The emergence of XML adoption as semi-structured data representation in multi-disciplinary domains
has highlighted the need to support the optimization of complex data retrieval processing. In a Big Data
environment, the need to speed up data retrieval processes has further grown significantly. In this paper,
we have adopted an optimization approach that takes into consideration the semantics of the dataset in
order to deal with the complexity of multi-disciplinary domains in Big Data, in particular when the data
is represented as XML documents. Our method particularly addresses a twig XML query (or a branched
path query), as it is one of the most costly query tasks due to the complexity of the join operation between
multiple paths. Our work focuses on optimizing the structural and the content part of XML queries
by presenting a method for indexing and processing XML data based on the concept of objects that is
formed from the semantic connectivity between XML data nodes. Our method performs object-based
data partitioning, which aims at leveraging the notion of frequently-accessed data subsets and putting
these subsets together into adjacent partitions. Then, it evaluates branched queries through two essential
components: (i) Structural and Content indexing, which use an object-based connection to construct
indices i.e. Schema Index, Data Index and Value Index; and (ii) query processing to produce the final
results in optimal time. At the end of this paper, a set of experimental results for the proposed approach
on a range of real and synthetic XML data, as well as a comparative study with other related work in
the area, are presented to demonstrate the effectiveness of our proposed method in terms of CPU cost,
matching and merging cost, scalability (size and number of branches) and total number of scanned elements.
Our evaluation demonstrates the benefit of the proposed index in terms of performance speed as well as
scalability which is critical in a large data repository.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

in multi-disciplinary domains [1-3]. The metadata in XML docu-
ments provides a semantically rich structure which can be lever-

The powerful ability of XML in describing and presenting data aged for various information system applications. The metadata
has been recognized as the standard for electronic data interchange also opens up opportunities to improve techniques to access and

* Corresponding author. Tel.: +61 421386433.
E-mail addresses: nalghamdi@students.latrobe.edu.au, ninasg11@hotmail.com

process XML data.

In this paper, we focus on processing XML queries efficiently
by taking into consideration the semantic connectivity of the
underlying XML documents. In particular, we focus on XML twig

(N.S. Alghamdi), w.rahayu@latrobe.edu.au (W. Rahayu), e.pardede@latrobe.edu.au queries with or without value predicates. A twig query is a type

(E. Pardede).

http://dx.doi.org/10.1016/j.future.2014.02.010
0167-739X/© 2014 Elsevier B.V. All rights reserved.

of query which accesses XML trees with multiple branches and


http://dx.doi.org/10.1016/j.future.2014.02.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.02.010&domain=pdf
mailto:nalghamdi@students.latrobe.edu.au
mailto:ninasg11@hotmail.com
mailto:w.rahayu@latrobe.edu.au
mailto:e.pardede@latrobe.edu.au
http://dx.doi.org/10.1016/j.future.2014.02.010

N.S. Alghamdi et al. / Future Generation Computer Systems 37 (2014) 212-231 213

XML Schema

—online—» |

Partitioning (Stage 1)

Index creation (Stage 2)

|
|
|
|
|
|
LResulls»
|
|
|
|
|
I

h 4
Query processor

Processing (Stage 3)

Fig. 1. The system configuration.

this query requires complex processing due to the joins between
multiple paths.

A Naive query processing by scanning the entire XML data to
search for a particular path will cause significant performance
degradation. Indexing schemes have been developed in recent
years to overcome this issue. Different XML data indexing and
query processing approaches have been proposed to support twig
queries. The previous XML data indices were classified into three
categories [4]. The first is path-based indices such as APEX [5]
and MDFB [6], which group nodes in data trees based on local
similarity and have an adjustable index structure depending on
the query workload. These indices need to deal with a huge index
size because its index keeps tracks of the forward and backward
paths to establish a supportive layer that can help in answering
twig queries effectively. The second is node-based indices, such
as TwigX-Guide [7], which index the position of each node within
the XML tree and then process the nodes by joining them when in
some cases; aggressive joins deteriorate the query performance.
The third is sequence-based indices such as ViST [8], PRIX [9]
and LCS-Trim [10], which evaluate queries based on sequence
matching after transforming both XML data and twig queries into
sequences. However, the third approach has a drawback, which
is the occurrence of false positive caused by sequence matching
instead of tree matching. All the above work focus on the structural
presentation of XML data (e.g. a sequence of nodes or a tree
pattern) rather than the semantic relationship between groups of
nodes (i.e. objects). Therefore, exploiting the semantic relationship
between XML data nodes to build an index scheme for twig query
processing is an ideal solution which has not been proposed in the
existing literature as yet.

The work presented in this paper is the ongoing work of a re-
search project on XML query optimization, which consists of three
stages (see Fig. 1). The first two stages can be considered as off-
line stages and the third is on-line stage. Stage one focuses on the
object-based partitioning methodology of XML data. Stage two fo-
cuses on the XML data indexing methodology. Stage three focuses
on the query processing method over indexed data. This paper
presents the second and third stage in more detail and the method-
ology of the first stage of the Object-based XML Data Partitioning
(OXDP) has been presented in [11,12]. Fig. 1 shows an overview of
our system configuration.

Our proposed indices in the second stage consist of three main
parts. The first part is the Schema Index; the second is the Data
Index; and the third is the Value Index. The construction phases of
the indices in the current stage are:

Phase 1: We build the Schema Index based on the object partitions
identified by the OXDP process. We tokenize each distinct element
tag to set up the Schema Index components.

Phase 2: We construct the Data Index components by grouping the
XML data within object partitions and we establish keys from the
Schema Index to the Data Index.

Phase 3: We then build the Value Index with knowledge of Schema
and the Data Index.

Then, in the third stage of our system, we proposed a query
processing method to handle indexed data. The query processor
can evaluate simple XML paths as well as XML paths with branches
and different value predicates.

This paper is organized as follows. Section 2 provides our mo-
tivation with a brief example that shows the utilization of the se-
mantics of XML in indexing and processing XML data to improve
the query performance. Also, it presents the importance of process-
ing value predicates in XML queries. The related work is reviewed
in Section 3. The preliminary knowledge is presented in Section 4.
We introduce our proposed indices in Section 5 and discuss the
processing method of XML queries in Section 6. Experimental re-
sults are provided in Section 7. Finally, we conclude the paper in
Section 8.

2. Our motivation and contributions

While most of the existing work does not consider the seman-
tics of XML data during the construction or processing of XML data,
our work actually exploits the semantics connectivity between
nodes to construct our indices. The incorporation of the semantic
features of index construction into the XML query processing ap-
proach will lead to an efficient pruning technique. This is because
the search space can be trimmed down to a group of data that fol-
lows certain semantics.

Q1 = “/purchaseOrder /ShipTo[city][state] /name/Fname”

For instance, assume we have a purchase order schema as shown in
Fig. 2 which describes a purchase order generated by home prod-
ucts ordering and a billing application [13] and we have Q1 as
above. Let say that this schema has two object partitions: one in-
cludes a ShipTo element with its descendants and another includes
a BillTo element with its descendants. Instead of accessing the two
partitions to find the answer to Q1, it is ideal to retrieve the answer
from a related portion of data. This action is possible if the index
is constructed semantically. Therefore, we introduce the concept
of objects in constructing and processing XML data. It will acceler-
ate the processing of XML queries by localizing the XML data into
a small and relevant portion of data.

In this paper, we tackle the issue of iteration on a large index
size to find matched trees, or matched sequences by introducing
the Schema Index. The Schema Index usually has a smaller index
size compared to an index built only based on the data. This will
help to find important keys within a small index size which is the
Schema Index built from the schema to find the answer from the
Data Index which is usually bigger since it is built from the data.

Q1, = “/purchaseOrder /ShipTo[city
= ‘Melbourne’and state = 'VIC']/name/Fname”.



Download English Version:

https://daneshyari.com/en/article/425880

Download Persian Version:

https://daneshyari.com/article/425880

Daneshyari.com


https://daneshyari.com/en/article/425880
https://daneshyari.com/article/425880
https://daneshyari.com

