Future Generation Computer Systems 34 (2014) 66-75

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Power-aware code scheduling assisted with power gating and DVS

Cheng-Yu Lee, Tzong-Yen Lin, Rong-Guey Chang *

g

@ CrossMark

Department of Computer Science and Information Engineering and the Advanced Institute for Manufacturing with High-tech Innovations,

National Chung Cheng University, Chia-Yi, Taiwan, ROC

HIGHLIGHTS

Our work can be applied to any compiler with architectural support.

Our work applies power gating and dynamic voltage scaling together to save power.
We build a model to analyze a code and set parameters in code scheduling.
Our approach can outperform hardware power gating in terms of EDP and ED?P.

ARTICLE INFO ABSTRACT

Article history:

Received 25 April 2013

Received in revised form

25 November 2013

Accepted 3 December 2013
Available online 27 December 2013

Traditionally, code scheduling is used to optimize the performance of an application, because it can
rearrange the code to allow the execution of independent instructions in parallel based on instruction
level parallelism (ILP). According to our observations, it can also be applied to reduce power dissipation
by taking advantage of the properties of existing low-power techniques. In this paper, we present a power-
aware code scheduling (PACS), which is a code scheduling integrated with power gating (PG) and dynamic

voltage scaling (DVS) to reduce power consumption while executing an application. In other words, from

Keywords:

the viewpoint of compilation optimization, PG and DVS can be applied simultaneously to a code and their

DVS impact can be enhanced by code scheduling to further save power. The result shows that when compared

Power gating
Code scheduling
Compiler

with hardware power gating, the proposed PACS can outperform by more than 33% and 41% in terms of
energy delay product and energy delay? product for DSPStone and Mediabench.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Global code scheduling is always used to improve performance
across basic blocks by means of interprocedural analysis. Although
it can be carried out by incorporating with other optimization
techniques to enhance its impact, its ability would still be limited
by instruction level parallelism (ILP). In our experience we found
that it can also be applied to exploit opportunities to perform
low-power optimizations. In this paper, we propose a global code
scheduling named power-aware code scheduling (PACS), which
is a code scheduling integrated with power gating (PG) and
dynamic voltage scaling (DVS) to reduce power consumption while
executing an application. The reason for choosing PG and DVS as
the part of PACS is because they are two common effective low-
power techniques.

In traditional code scheduling these opportunities are uncov-
ered depending only on ILP. With PACS, however, in addition to
the ILP it also depends on the features of existing low-power tech-
niques to save considerable power. To perform the proposed PACS,

* Corresponding author.
E-mail addresses: 1cy97p@cs.ccu.edu.tw (C.-Y. Lee), Ity93@cs.ccu.edu.tw
(T.-Y. Lin), rgchang@cs.ccu.edu.tw (R.-G. Chang).

we partition an application into many regions based on their use
of functional units. Then the code scheduling is applied to maxi-
mize the idle period of a functional unit and apply PG to turn off
idle functional units of each region. This phase aims at minimiz-
ing the switching overheads when applying PG to save power. In
addition, modern processors are always designed with multiple
power modes to support DVS. Consequently, the transitions among
power modes also result in power dissipation. At this stage, the
code scheduling is applied again to minimize the number of tran-
sitions during DVS. On the one hand, in order to let PACS take ad-
vantage of the PG, we add new instructions into the architecture to
turn the functional units on and off. Normally, the functional units
such as adder and multiplier might be turned on during execution.
However, if we study the behavior of an application it is evident
that this can lead to unnecessary power consumption. For exam-
ple,if an application contains n distributed code segments that only
perform additions, then this implies that only adders need to be ac-
tivated in them at run time. To save power, we can apply the PACS
to merge them together if no dependencies exist among them and
then turn on the adders only once in these code segments. On the
other hand, since the power dissipation is closely related to voltage
and clock frequency, the architectures of modern processors pro-
vide several power modes to reduce power dissipation by dynam-
ically adjusting the voltage and the clock frequency [1]. Previous

0167-739X/$ - see front matter Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2013.12.011


http://dx.doi.org/10.1016/j.future.2013.12.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.12.011&domain=pdf
mailto:lcy97p@cs.ccu.edu.tw
mailto:lty93@cs.ccu.edu.tw
mailto:rgchang@cs.ccu.edu.tw
http://dx.doi.org/10.1016/j.future.2013.12.011

C.-Y. Lee et al. / Future Generation Computer Systems 34 (2014) 66-75 67

int main(void)

{

for (i = 0;

i < 100; i++)
a=a+ I;
temp = a * c;
for (j = 0; j < 200; j++)
b=>b+ 2;

temp2 = b x d;

b

int main(void)

{

TURN_ON

adder
TURN_OFF multiplier
for (i = 0; i < 100; i++)
a=a+ 1;
for (j = 0; j < 200; j++)
b=>b+ 2;

TURN_OFF adder
TURN.ON multiplier

temp = a % C;
temp2 = b x d;

Fig. 1. Motivating example.

work has shown that the switching overhead of the power modes
has a significant impact on power dissipation [2,3]. After reducing
the switching overhead of the functional units, we assign power
modes to the regions, as described later. Then we apply PACS to this
code again. The regions that have no dependencies among them
and with the same power mode are then merged into a new region.
Thus the proposed PACS can continue minimizing the number of
transitions arising from DVS to save power.

Obviously, the scheduling process described in the above two
stages is very complicated since it must check the dependency
relationships among regions. The scheduling process is described
in detail in the following sections. Our work implements the
compilation system based on the SUIF [4] compiler infrastructure
and the Wattch simulator [5]. The experiments shows that the
proposed PACS can save power and in addition slightly improve
performance for DSPstone, and Mediabench benchmark suites.
The remainder of this paper is organized as follows. Section 2
presents our main idea and provides a motivating example.
Section 3 describes the proposed PACS algorithm in detail and
the experimental results are given in Section 4. Section 5 contains
related work and Section 6 concludes.

2. Basic idea

Fig. 1 shows an example to explain the basic idea of this pa-
per, where Fig. 1(a) is the original code segment and Fig. 1(b) is the
optimized code segment of Fig. 1(a). To demonstrate their differ-
ences in power dissipation, we make the following assumptions.
(1) There are four regions in the original code, two loops and two
expressions that do the multiplications. (2) Initially, we assume
that the adder is turned on since some instructions such as load
and store will use it to calculate the target address. The multiplier
is turned off. (3) We provide two power modes, normal mode and
power down mode. The normal mode is set to the default power
mode. (4) Two loops are assigned to the power down mode since
they perform additions many times and two multiplications are as-
signed to the normal node. The assignments of power modes will
be explained in detail in Section 3. (5) To reduce power dissipa-
tion, the functional units are only turned off when they are not
used. In Fig. 1(a), following the above assumptions, the adder will
be turned on and the multiplier will be turned off in two loops,
and the adder will be turned off and the multiplier will be turned
on when doing multiplications. In Fig. 1(b), to begin with, two
loops and two expressions can be merged into two regions respec-
tively since they contain the same functional unit and they have no

dependencies. Next, we turn off the multiplier in the region con-
taining two loops and then turn off the adder in the region contain-
ing two expressions. Finally, we assign the region containing two
loops the power down mode and assign the region containing two
expressions the normal mode. In contrast with Fig. 1(a), the code
segment in Fig. 1(b) can reduce more power consumption since it
maximizes the idle periods of the adder and the multiplier and also
saves two transitions of power modes during DVS.

3. Proposed power-aware code scheduling (PACS)

In this section, we first describe how an application is parti-
tioned into regions, then we introduce the architectural support
for PG and DVS, and finally we present our PACS algorithm.

3.1. Region partitioning

To easily perform our PACS, we must partition a given applica-
tion into many small parts based on the use of functional units. In
this paper, these parts are called regions and they are optimization
units for PACS. To achieve this objective, we follow the compilation
process to translate an application into the intermediate represen-
tation (IR) at the front end of the compiler and then IR is used to
build the control flow graph (CFG) and the data flow graph (DFG).
Since CFG and DFG are comprised of many basic blocks, which are
straight code segments without branches, we analyze each basic
block and partition it into regions based on the use of the functional
unit. For example, there are four regions in Fig. 1(a) based on ad-
ditions and multiplications. To perform PACS, we must record the
information of each region including its scope, the functional units
used in it, the power information, and the dependency relation-
ship. Initially we record the functional units used in each region
and insert instructions in the head of each region to turn off idle
functional units. Then we apply the first PACS to reschedule the
code based on the dependency relationship among regions. At this
stage, the independent regions that have the same idle functional
units will be merged together by PACS. Next, PACS is used to reduce
the power dissipation with respect to DVS. Each region will be as-
signed a power mode based on its power information. Once again,
the independent regions that have the same power mode will be
merged together by PACS. These details of PACS are described in
Section 3.3.

3.2. Architectural support for PG and DVS

After the region partitioning is finished, we can apply PACS to
each region via interprocedural analysis. To perform PG on each



Download English Version:

https://daneshyari.com/en/article/425915

Download Persian Version:

https://daneshyari.com/article/425915

Daneshyari.com


https://daneshyari.com/en/article/425915
https://daneshyari.com/article/425915
https://daneshyari.com

