Future Generation Computer Systems 34 (2014) 110-123

Contents lists available at ScienceDirect 2 = ;
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

The user in the loop: Enabling user participation for

self-adaptive applications

g

@ CrossMark

Christoph Evers®*, Romy Kniewel®, Kurt Geihs?, Ludger SchmidtP

2 Distributed Systems Group, University of Kassel, Wilhelmshéoher Allee 73, 34121 Kassel, Germany
> Human-Machine Systems Engineering, University of Kassel, Monchebergstrafe 7, 34125 Kassel, Germany

HIGHLIGHTS

We conducted a substantial user study with 62 participants.

Interdisciplinary research results regarding human-computer interaction and self-adaptive software.

We provide a concept of how the user can be integrated to the adaptive feedback loop of autonomous systems.

We show how notifications on adaptations can be designed to be helpful and non-interrupting.

We demonstrate extensions to an existing middleware solution that enable active user participation for adaptive applications.

ARTICLE INFO

Article history:

Received 11 February 2013
Received in revised form

24 October 2013

Accepted 3 December 2013
Available online 16 December 2013

ABSTRACT

Keywords:

Self-adaptation

Usability

Autonomous computing
Interruption

User attention

Ubiquitous computing
Human-computer interaction

Future computing systems must adjust to the user’s situations, habits, and intentions. Self-adaptive
applications autonomously adapt to changing contexts without asking the user. However, the self-
adaptive behaviour lacks of success if it does not correspond to the user’s personal interaction habits
and intentions, particularly for complex scenarios with a high degree of user interaction. Concerning
the interaction design, such adaptations can be irritating and distracting for the user if they do not
match the current situation. In this article we provide a solution how to integrate the user in the self-
adaptation feedback loop. The user will be able to influence the adaptation behaviour at run-time and in
the long term by setting individual preferences. Consequently, we achieve a harmonisation between full
application autonomy and user control. We implemented our generic concepts by extending an existing
self-adaptation middleware with capabilities to respect the user’s application focus and interaction
behaviour. A notification-based solution for user participation has been evaluated in a substantial user
study with 62 participants. Although participants perceived much better control with our solution, the
study made clear that notification design is specific for each adaptation type.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Context-aware and self-adaptive software is a key element
of future computing systems. Self-adaptive applications are able
to consider their environmental context through information
provided by sensors or other data sources and dynamically adapt
to changes that may occur in highly volatile and heterogeneous
environments.

Unlike traditional applications, adaptive applications are able
to change their state and behaviour at run-time. Application
adaptation is a result of autonomic computing research [1] to
achieve the best desirable service for the user without involving

* Corresponding author. Tel.: +49 5618046279.
E-mail addresses: evers@vs.uni-kassel.de (C. Evers), r.kniewel@uni-kassel.de
(R. Kniewel), geihs@uni-kassel.de (K. Geihs), .schmidt@uni-kassel.de (L. Schmidt).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.12.010

the user in the machine’s adaptation decision. There have been
various approaches to incorporate adaptive behaviour in software.
The MAPE-K feedback loop [2] is the foundation for many of
them. It defines an autonomic manager that comprises the four
basic elements Monitoring, Analysing, Planning, and Executing
(Fig. 1). The Knowledge component collects data and allows further
reasoning, e.g. creating a knowledge base or learning of behaviour.
A MAPE-K feedback loop is a closed loop that explicitly aims at
excluding user participation during run-time. All decisions and
actions are made by the system. The design of the decision making,
i.e. analysis and planning, is created by the software developer.

A research challenge is to integrate the user in this feedback
loop when user participation is desired or required [3]. Experience
with adaptive applications has shown that it is not always prefer-
able to have applications operating completely autonomously.
Users may further not trust such applications and conceal their ac-
tions [4]. Van der Heijden [5] argues that transferring control from

http://dx.doi.org/10.1016/j.future.2013.12.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.12.010&domain=pdf
mailto:evers@vs.uni-kassel.de
mailto:r.kniewel@uni-kassel.de
mailto:geihs@uni-kassel.de
mailto:l.schmidt@uni-kassel.de
http://dx.doi.org/10.1016/j.future.2013.12.010

C. Evers et al. / Future Generation Computer Systems 34 (2014) 110-123 111

Analysing

Knowled i
(nowege) v |

By 7

[

Planning

Fig. 1. MAPE-K feedback loop in autonomic computing [2].

the user to the system results in increased user anxiety. Also, users
would like to customise the application to certain different degrees
so it matches their personal preferences. Salehie et al. [6] state that
human involvement in general is quite valuable for improving the
manageability and trustworthiness of adaptive software. Barkhuus
and Dey [7] revealed in a study on context-aware applications that
users preferred context-aware features over personalisation, but
in the same moment they experienced a lack of control. We do not
question the concept of autonomic computing in general as it is
fundamental for future computing scenarios, but rather we pro-
pose to open the feedback loop for user participation in applica-
tions with a high degree of user interaction.

Our contribution is as follows: we first define specific require-
ments from human-computer interaction for adaptive applica-
tions. We then provide a solution how to integrate the user in
the decision loop of an adaptive application to respect his inter-
action practices and to influence the application’s behaviour in or-
der to increase the controllability of an application. An important
element of our model-driven approach is the consideration of the
user’s perceptional focus on the application. We identify dimen-
sions of component-based applications that the user is able to in-
fluence and hence achieve a higher user acceptance. Based on the
dimensions of user participation we define several mechanisms for
active user participation while still maintaining application auton-
omy.

Although the presented solution assumes an underlying
middleware-based and component-based solution for architec-
tural adaptation, the generic concept can be transferred to other
adaptation domains. Further, we focus on user acceptance coming
through usability. Also privacy and security issues need to be con-
sidered for user acceptance in general, but this is beyond the focus
of this paper.

The remainder of this article is structured as follows: in Sec-
tion 2 we first discuss the related work. Section 3 gives an overview
on adaptive software and the corresponding usability require-
ments. Section 4 introduces the Meet-U case study and includes
results from an initial usability evaluation. Based on the experience
we present our approach to integrate the user in the adaptive feed-
back loop in Section 5. Section 6 describes our system architecture.
We evaluate the notification-based reactive user adaptation mech-
anism in Section 7 and finish with a conclusion in Section 8.

2. Related work

Atypical approach to achieve application-level adaptation is the
use of an adaptation middleware which incorporates a MAPE-K
feedback loop. Available solutions [8-10] show how architectural
re-configuration is performed in the domain of ubiquitous and
mobile applications. We expect a high degree of user interaction
in those domains. However, none of the middleware approaches
explicitly considers user participation. For example, in MUSIC [9],
the application acts autonomously according to a variability model
that is specified at design-time by the application developer.

This would not be a problem as long as the user is not affected
negatively, but as we will see later, this is unlikely.

Latest applications like Google Now [11] or Motorola Smartac-
tions [12] adapt information or systems setting according to par-
ticular situations. However, these applications include very limited
elements of adaptation and adaptation features are implemented
in proprietary ways for specific use cases. For every application
the developer has to rethink how to implement the adaptive be-
haviour. There is no systematic way of designing application-level
adaptation with a specific degree of user participation.

User influence in adaptive applications has been considered as
important ever since [3,6] but only few works actually address this
topic. Henricksen et al. [13], as well as Fong et al. [14], present
approaches to incorporate user preferences in the adaptation
decision. Their work focuses on intelligibility of adaptation by
modelling context and context information, revealing context
information to the user, and by allowing the user to modify the
adaptation behaviour based on preferences. The concept of user
preferences can be generalised to personalisation. Gil et al. [15]
employ personas and feature models to model service obtrusive-
ness based on the type of user. Feature models decompose the in-
teraction in different adaptation aspects. Each feature describes a
variant of the application interaction.

We claim that intelligibility and accountability of adaptive ap-
plications in combination with preference modelling are very im-
portant requirements. Revealing context information to the user
might be one solution but the user does not necessarily want to
know about technicalities of the adaptation, nor does he want to
be bothered with concerns about which context information is ac-
tual necessary to realise a particular feature. Rather we propose to
integrate the user in the adaptation feedback loop and thus enable
him to influence the behaviour of the application explicitly and im-
plicitly.

Another promising concept is machine learning on the user’s
device [16,17]. With active learning the user is able to rate a
specific adaptation decision whether it was good or bad. The
application is then able to incorporate the user’s decision in its
own adaptation reasoning which results in higher personalisation.
Unfortunately, this approach requires a lot of additional interaction
in the early phases of application use. This interaction is not related
to the user’s actual tasks and hence an additional burden. Here
the challenge is to find a trade-off between long term profit and
short term interruption. Another problem could be the increased
computational demand on a mobile device.

Gil and Pelechano [18] use machine learning techniques to min-
imise mobile interaction obtrusiveness by adapting service noti-
fications. However, their focus is on notifications, coming from
different services the user has subscribed to. They do not consider
adaptive software in the sense of autonomous software reconfigu-
ration.

Since users are surrounded by information technology every
day and everywhere, obtrusiveness and interruption became im-
portant research topics. Several studies analysed the interruption
of messages and notifications on mobile devices [19,20], while oth-
ers examined the interruptive character of an unmuted mobile de-
vice [21]. They all stress the fact that interruptions come at the cost
of diminished user attention whether they are signalled by notifi-
cations or ringing phones. This is very similar to adaptive software
as application reconfiguration at run-time can be at least as obtru-
sive as a notification.

3. Adaptation and usability

In this section we first describe properties of self-adaptive
software and the basic terminology. We then go on by defining
specific requirements coming from usability engineering and apply
them to self-adaptive software.

Download English Version:

https://daneshyari.com/en/article/425919

Download Persian Version:

https://daneshyari.com/article/425919

Daneshyari.com

https://daneshyari.com/en/article/425919
https://daneshyari.com/article/425919
https://daneshyari.com

