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Since pointer variables frequently cause programs to crash in unexpected ways, they often pose
vulnerability abused as immediate or intermediate targets. Although code pointer attacks have been
historically dominant, data pointer attacks are also recognized as realistic threats. This paper presents
how to secure heap memory from data pointer attacks, in particular, heap overflow attacks. Our protection
scheme encrypts the data pointers used for linking free chunks, and decrypts the pointers only before

dereferencing. We also present a list structure with duplicate links that is harder to break than the
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conventional linked list structure. Our experiment shows that the proposed data pointer encoding is
effective and has slightly better performance than the integrity check of link pointers in GNU'’s standard
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1. Introduction

Since pointer variables frequently cause programs to crash in
unexpected ways, they often pose vulnerability abused as imme-
diate or intermediate targets. Although code pointer attacks such
as stack smashing [ 1] have been historically dominant, data pointer
attacks are also recognized as realistic threats [2].

Well-known vulnerability of data pointers can be found in the
heap area managed by dynamic memory allocators. For instance,
the bind8 attack [3] on name servers overflows the heap area
compromising two pointers used for linking free chunks. When
the dynamic memory manager accesses the compromised data
pointers for housekeeping, the target memory location whose
address is held in one of the data pointers is overwritten with the
value in another data pointer. Another well-known vulnerability
in heap space may be observed by freeing a chunk twice [4].
Deallocating an already freed chunk corrupts the free chunk list.
Attackers can take advantage of the double-free vulnerability to
initiate data pointer attacks.

This paper presents how to secure heap memory from data
pointer attacks, in particular, heap overflow attacks. In our scheme,
the dynamic memory manager encrypts the pointers linking free
chunks, and decrypts the pointers only when it is necessary to
know the real addresses before dereferencing. We also present a
list structure with duplicate links that is harder to break than the
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conventional linked list structure with a single link. In addition,
lists with duplicate links enable intrusion detection to work under
explicit control. We implemented our idea in the GNU C library and
compared its effectiveness and runtime overhead with those of the
GNU's standard version in a Linux environment.

In the rest of this paper, Section 2 explains the vulnerabilities
of data pointers in heap space and how to attack them. Protection
of data pointers by encoding is presented in Section 3. Section 4
is about dual-linked lists. Section 5 demonstrates the effectiveness
and performance of data pointer encoding with our implementa-
tion in the GNU C library’s dynamic memory manager. Section 6
overviews techniques for data pointer protection and Section 7
concludes this paper.

2. Vulnerability of data pointers in heap space

Many Linux systems adopt Doug Lea’s memory allocator [5]
as the default heap manager. The heap memory space consists
of allocated and free chunks shown in Fig. 1. The prev_size
and size fields denote the size of previous and current chunks
respectively. Using them, physically adjacent chunks can be
accessed. For allocated chunks, only the size field is valid, while
all fields are valid for free chunks. The P field stands for the
PREV_INUSE flag that indicates whether the previous chunk is
allocated or not. If P is 0, then the previous chunk is a free one.
Otherwise the previous chunk is an allocated one. The prev_size
field is valid only when P is zero. The actual area used by a program
begins from below the size field and ends at the prev_size field
of the following chunk. Two data pointers, fd (forward pointer)
and bk (back pointer), connect the next and previous free chunks
to form doubly linked lists, called bins.
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Table 1

Characteristics of bins.
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prev_size

prev_size

size P

size P

usable area

fd
bk

unused area

(a) Allocated chunk.

(b) Free chunk.

Fig. 1. Structures of memory chunks.

Bin Structure Chunk size Insert/delete
Fast Singly linked Uniform LIFO
Small Doubly linked Uniform FIFO
Large Doubly linked Variable (sorted) Random
Unsorted Doubly linked Variable (unsorted) FIFO

FD = P -> fd;

BK = P -> bk;

FD -> bk = BK;
BK -> fd = FD;

Fig. 2. UNLINK macro for separation of a chunk P.

There are four kinds of bins: fast bins, small bins, an unsorted
bin and large bins. Fast bins are singly linked lists for fast operation
and work as stacks. Each of the fast bins has chunks of the same
size. Small bins are used in a first-in-first-out manner. The sizes of
the chunks of a small bin are also identical. A large bin keeps free
chunks whose sizes range over certain intervals, and the chunks
are sorted according to their sizes. When a chunk is allocated from
a large bin, the oldest chunk with the least waste is allocated.

The unsorted bin is used as a “cache” for immediate reuse
of freed chunks. It imposes no order among its chunks. Memory
manager appends a freed chunk at the end of the bin. When
memory allocation is requested, the memory allocator searches
a fast or small bin with proper chunk size. If there is no chunk
available, then the memory allocator resorts to the unsorted bin.
If the size of the first chunk can satisfy the request, the chunk is
allocated. Otherwise, the chunk is deleted from the unsorted bin
and put in another appropriate bin. If the first available chunk is too
large, it is split into two chunks. One is allocated, and the other is
replaced in a proper bin. The inspection and replacement of cached
chunks are repeated until a chunk of proper size is allocated or they
are exhausted. Table 1 summarizes the characteristics of each bin.

If a chunk physically adjacent to a free one is released, they are
merged together to minimize fragmentation. The merger also sim-
plifies the manipulation of free chunks, but incurs some overhead.
The merged chunk would be inserted into the unsorted bin. When
deleting a chunk from a bin, the macro UNLINK in Fig. 2 is invoked.

Fig. 3 shows possible phases of deallocation of chunk A by the
function free. When chunk A is released, chunks A and P should
be merged if chunk P next to chunk A is a free one as in Fig. 3(a). To
merge chunks A and P, chunk P is deleted from the bin it belongs
to. Fig. 3(b) shows the state when chunk P is unlinked from the
bin. Fig. 3(c) shows the state when chunks A and P are merged. The
merged chunk is kept in the unsorted bin. Dotted links in Fig. 3(d)
connect chunks in the unsorted bin.

Fig. 4 shows a code segment causing heap overflow. We assume
that chunk b is located right after chunk a. We also assume that the
allocated size of chunk a is exactly 104 bytes including the 8-byte
header. Note that the size of an allocated chunk may be greater
than the requested size depending on the source of the chunk. For
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Fig. 3. Phases of deallocation of chunk A by a call to function free. Empty squares
are allocated chunks. Arrows are the link between two free chunks in a bin.

a = malloc(96);

b = malloc(80);

¢ = malloc(80);
strcpy(a, argvlil);
free(a);

free(b);

free(c);

Fig. 4. An example of buffer overflow in the heap area.

example, a chunk from the unsorted bin may have space more than
requested. Since the function strcpy does not limit the size of
the second argument, a command line input larger than 112 bytes
overwrites the link pointers of chunk b. Fig. 5 shows the state of
chunk b when call strcpy () is completed. Forward pointer £d of
chunk b is set to a value less than the address of a return address
pointer by 12. Similarly, back pointer bk is set to the address of a
shellcode.

When the call free (a) is executed, flag P of chunk c is checked
if chunk b is free. Access to chunk c requires reading the size field
of chunk b that is compromised to a value so that chunk b is faked
as chunk c. Since the P flag of chunk b is 0, function free regards
chunk b as a free one and chunk b is unlinked to be merged with
chunk a. Unlinking chunk b works with the compromised value
of the pointers £d and bk writing the return address slot with
the address of a shellcode overwritten by heap overflow. Attacks
with a similar pattern can also overwrite an entry of a global offset
table for shared objects or other code pointers. The vulnerability of
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