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The state complexity of basic operations on regular languages considering complete 
deterministic finite automata (DFA) has been extensively studied in the literature. But, 
if incomplete DFAs are considered, transition complexity is also a significant measure. 
In this paper we study the incomplete (deterministic) state and transition complexity of 
some operations for regular and finite languages. For regular languages we give a new 
tight upper bound for the transition complexity of the union, which refutes the conjecture 
presented by Y. Gao et al. For finite languages, we correct the published state complexity 
of concatenation for complete DFAs and provide a tight upper bound for the case when 
the right operand is larger than the left one. We also present some experimental results to 
test the behavior of those operations on the average case, and we conjecture that for many 
operations and in practical applications the worst-case complexity is seldom reached.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades the descriptional complexity of regular languages has been extensively investigated. For deter-
ministic finite automata (DFA), the complexity measure usually studied is the state complexity, i.e. the number of states 
of the complete minimal DFA, [3,23,24,11,4,25], while for nondeterministic finite automata (NFA) both state and transition 
complexities were considered [10,7,19,12,11]. For NFAs transition complexity is generally considered a more interesting mea-
sure. Considering complete DFAs, where the transition function is total, the transition complexity is, obviously, the product 
of the alphabet size by the state complexity. But in many applications where large alphabets need to be considered or, in 
general, when very sparse transition functions take place, partial transition functions are very convenient. Examples include 
lexical analyzers, discrete event systems, or any application that uses dictionaries where compact automaton representations 
are essential, for instance for manipulation on large Unicode alphabets [2,17,6,18]. And, in many cases, only finite languages 
are needed. Thus, it makes sense to investigate the transition complexity of not necessarily complete DFAs.

In this paper we study the incomplete operational transition complexity of several operations on regular and finite lan-
guages. To be comprehensive we also analyze the state complexity of resulting languages. In general, transition complexity 
bounds depend not only on the complexities of the operands but also on other refined measures, as the number of unde-
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Table 1
Incomplete transition complexity for regular and finite languages, where m and n are the (incomplete) state complexities of the operands, f1(m, n) =
(m − 1)(n − 1) + 1 and f2(m, n) = (m − 2)(n − 2) + 1. The column |�| indicates the minimal alphabet size for which the upper bound is reached.

Operation Regular |�| Finite |�|
L1 ∪ L2 2n(m + 1) 2 3(mn − n − m) + 2 f1(m,n)

L1 ∩ L2 nm 1 (m − 2)(n − 2)(2 + ∑min(m,n)−3
i=1 (m − 2 − i)(n − 2 − i)) + 2 f2(m,n)

LC m + 2 1 m + 1 1
L1 L2 2n−1(6m + 3) − 5, 

if m, n ≥ 2
3 2n(m − n + 3) − 8, if m + 1 ≥ n 2

See Theorem 16(5) n − 1
L� 3.2m−1 − 2, if m ≥ 2 2 9 · 2m−3 − 2m/2 − 2, if m is odd 3

9 · 2m−3 − 2(m−2)/2 − 2, if m is even
LR 2(2m − 1) 2 2p+2 − 7, if m = 2p 2

3 · 2p − 8, if m = 2p − 1

fined transitions or the number of transitions that leave the initial state. For both families of languages we performed some 
experimental tests in order to have an idea of the average-case complexity of those operations.

The paper is organized as follows. Section 2 recalls some useful definitions and notation. In Section 3, we study the 
state and transition complexity for the union, concatenation, Kleene star and reversal operations on regular languages. For 
all these operations tight upper bounds are given. The tight upper bound presented for the transition complexity of the 
union operation refutes the conjecture presented by Y. Gao et al. [8]. We also present the same study for unary regular 
languages. In Subsection 3.6 we analyze some experimental results. In the Section 4 we continue the line of research of 
the Section 3 considering finite languages. For the concatenation, we correct the upper bound for the state complexity of 
complete DFAs [5], and show that if the right operand is larger than the left one, the upper bound is only reached using an 
alphabet of variable size. We also present some experimental results for finite languages. The algorithms and the witness 
language families used in this work, although new, are based on the ones of Yu et al. [26]; several proofs required new 
techniques.

Table 1 presents a summary and a comparison of the obtained results for transition complexity on general and finite 
languages. Note that the values in the table are obtained using languages for which the upper bounds are reached. This 
paper expands the work presented in extended abstracts [16,15] with full proofs of theorems and experimental tests.

2. Preliminaries

We recall some basic notions about finite automata and regular languages. For more details, we refer the reader to the 
standard literature [13,22,21].

Given two integers m, n ∈N, let [m, n] = {i ∈N | m ≤ i ≤ n} and [m, n[ = {i ∈N | n ≤ i < n}.
A DFA is a five-tuple A = (Q , �, δ, q0, F ) where Q is a finite set of states, � is a finite input alphabet, δ is the transition 

function δ : Q × � → Q , q0 in Q is the initial state, and F ⊆ Q is the set of final states. Let |�| = k, |Q | = n, and without 
loss of generality, we assume Q = [0, n[ with q0 = 0. The transition function can be naturally extended to subsets of Q
and words w ∈ �� . A DFA is called complete if the transition function δ is total. In this paper we consider the DFAs to 
be not necessarily complete, i.e. with partial transition functions. For q ∈ Q and σ ∈ �, if δ(q, σ) is defined we write 
δ(q, σ) ↓, and δ(q, σ) ↑, otherwise, and, when defining a DFA, an assignment δ(q, σ) = ↑ means that the transition is 
undefined. The language accepted by A is L(A) = {w ∈ �� | δ(q0, w) ∈ F }. Two DFAs are equivalent if they accept the same 
language. For each regular language there exists a unique minimal complete DFA with the minimum number of states. The 
left quotient of L ⊆ �� by x ∈ �� is DxL = {z | xz ∈ L}. The equivalence relation R L ⊆ �� × �� is defined by (x, y) ∈ R L if 
and only if Dx L = D y L. The Myhill–Nerode Theorem states that a language L is regular if and only if R L has a finite number 
of equivalence classes, i.e., L has a finite number of left quotients. This number is the number of states of the minimal 
complete DFA, which is unique up to isomorphism. Using Myhill–Nerode theorem, it is easy to prove that an automaton is 
minimal if all its states correspond to different left quotients. Thus, to prove that a DFA is minimal it is enough to show 
that for each state q, there is a word w such that δ(q, w) ∈ F and δ(q′, w) /∈ F for all other states q′ = q. We say that this 
word w distinguishes q from the other states. The state complexity, sc(L), of a regular language L is the number of states of 
the minimal complete DFA of L. If we consider the non-complete minimal DFA, its number of states is the number of left 
quotients minus one, due to the removal of the dead state, that we denote by �. The left quotient corresponding to � is 
the empty language. The incomplete state complexity of a regular language L (isc(L)) is the number of states of the minimal 
DFA without states non-conducting to a final state (thus, not necessarily complete) that accepts L. Note that isc(L) differs at 
most by 1 from sc(L) (isc(L) ∈ {sc(L) − 1, sc(L)}). The incomplete transition complexity, itc(L), of a regular language L is the 
minimal number of transitions over all DFAs that accept L. Whenever the model is explicitly given we refer only to state or 
transition complexity, by omitting the term incomplete.1 It is well known that the minimal DFA of a language has also the 
minimal number of transitions.

1 In [8] the authors use the notation sc(L) and tc(L) instead of isc(L) and itc(L).
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