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The transition structure α : X → X A of a deterministic automaton with state set X and 
with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. 
We use this algebra–coalgebra duality as a common perspective for the study of equations 
and coequations. For every automaton (X, α), we define two new automata: free(X, α)

and cofree(X, α) representing, respectively, the greatest set of equations and the smallest 
set of coequations satisfied by (X, α). Both constructions are shown to be functorial. Our 
main result is that the restrictions of free and cofree to, respectively, preformations of 
languages and to quotients A∗/C of A∗ with respect to a congruence relation C , form 
a dual equivalence. As a consequence, we present a variant of Eilenberg’s celebrated 
variety theorem for varieties of monoids (in the sense of Birkhoff) and varieties of 
languages.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, a deterministic automaton is a pair (X, α) consisting of a possibly infinite set X of states and a transition 
function α : X → X A , with inputs from an alphabet A. Because of the isomorphism

(X × A) → X ∼= X → X A

a deterministic automaton can be viewed both as an algebra [1,2] and as a coalgebra [3,4]. This algebra–coalgebra duality 
in the modelling of automata leads us to the following setting for our investigations:
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(1)

In the middle, we have our automaton (X, α). Any function x : 1 → X represents the choice of a designated point, that is, 
initial state, x ∈ X . Dually, any function c : X → 2 gives us a (binary) colouring of the states in X or, equivalently, a set 
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{x | c(x) = 1} of final or accepting states. On the left side of our diagram, A∗ is the automaton of all words over A, with 
transitions

v va
a

and with the empty word ε as initial state. Furthermore, every point x : 1 → X determines a unique homomorphism (that is, 
transition preserving function)

rx : A∗ → X w �→ xw

that sends any word w to the state xw reached from the initial state x on input w . Dually, on the right side of our diagram, 
2A∗

is the automaton of all languages over A, with transitions

L La = {v ∈ A∗ | av ∈ L}a

and colouring function ε?, asking whether the empty word belongs to a language or not

ε?(L) =
{

1 if ε ∈ L
0 if ε /∈ L

Every colouring c : X → 2 determines a unique homomorphism

oc : X → 2A∗
x �→ {w ∈ A∗ | c(xw) = 1}

that sends a state x to the language that it accepts.
As it turns out, a pointed automaton (X, x, α) is an algebra (and not a coalgebra); a coloured automaton (X, c, α) is a 

coalgebra (and not an algebra). And a pointed and coloured automaton (X, x, c, α), which is what in the literature is usually 
taken as the definition of ‘deterministic automaton’, is neither an algebra nor a coalgebra.

Now sets of equations will live in the left – algebraic – part of our diagram and correspond to the kernels of the homo-
morphisms rx; that is, sets of pairs of words (v, w) with xv = xw . Dually, sets of coequations live in the right – coalgebraic – 
part of our diagram and correspond to the image of the homomorphisms oc ; that is, sets of languages containing oc(x), for 
every x ∈ X . Satisfaction of sets of equations and coequations by the automaton (X, α) will then be defined by quantifying 
over all points x : 1 → X and all colourings c : X → 2, respectively.

The main contribution of the present paper will be the observation that equations and coequations of automata are 
related by a dual equivalence. To this end, we will further refine diagram (1) as follows:

1

A∗ free(X,α) (X,α) cofree(X,α)

2

2A∗

cx

The new diagram includes, for every automaton (X, α) a new automaton free(X, α), which will be shown to represent 
the largest set of equations satisfied by (X, α). And, dually, we will construct an automaton cofree(X, α), which will represent 
the smallest set of coequations satisfied by (X, α). The automaton free(X, α) will turn out to be isomorphic to the so-called 
transition monoid from algebraic language theory [5,6] and as a consequence, cofree(X, α) can be viewed as its dual.

Next, we will show that the constructions of free(X, α) and cofree(X, α) are in fact functorial, that is, they act also 
on (certain) homomorphisms of automata. If we then restrict the functor cofree to the image of the category of automata 
under free, we obtain our main result: a dual equivalence. This dual equivalence relates, more precisely, two special classes 
of automata: on the one hand, the class of quotients A∗/C of the automaton A∗ with respect to a congruence relation C ⊆
A∗ × A∗; on the other hand, the class of preformations of languages, which in the present paper are defined as subautomata 
of the automaton 2A∗

that are complete atomic Boolean algebras closed under left and right language derivatives. As it 
turns out, this duality is a lifting of the well-known dual equivalence between sets and complete atomic Boolean algebras: 
on congruence quotients, cofree acts as the powerset construction, and on preformations, applying free amounts to taking 
the set of atoms.

We then illustrate the dual equivalence between equations and coequations by applications to both regular languages and 
non-regular ones, such as context-free languages. Furthermore, we will show how to use the duality to give (co)equational 
definitions of interesting classes of languages, again not restricted to regular ones. We also present a variant of Eilenberg’s 
celebrated variety theorem [2]. We replace pseudovarieties in the original work of Eilenberg by varieties of monoids (in the 
sense of Birkhoff [7]). Further, we replace varieties of regular languages by varieties of languages, which are classes of formal 
languages closed under some properties defined in terms of equations and coequations. Following the spirit of the original 
result by Eilenberg, we prove that there is a one-to-one correspondence between varieties of monoids and varieties of 
languages. Finally, we introduce the notion of equational bisimulation and a corresponding coinduction proof principle. For a 
given congruence relation C , we can show that a language satisfies C and hence belongs to the corresponding preformation 
of languages, by constructing a suitable equational bisimulation.
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