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Deciding in an efficient way weak probabilistic bisimulation in the context of probabilistic 
automata is an open problem for about a decade. In this work we close this problem by 
proposing a procedure that checks in polynomial time the existence of a weak combined 
transition satisfying the step condition of the bisimulation. This enables us to arrive at a 
polynomial time algorithm for deciding weak probabilistic bisimulation, and also branching 
probabilistic bisimulation. We furthermore present several extensions to interesting related 
problems, in particular weak and branching probabilistic simulation, setting the ground for 
the development of more effective and compositional analysis algorithms for probabilistic 
systems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Probabilistic automata (PAs) constitute a mathematical framework for the specification of probabilistic concurrent sys-
tems [1,2]. Probabilistic automata extend classical concurrency models in a simple yet conservative fashion. In probabilistic 
automata, there is no global notion of time, and probabilistic experiments can be performed inside a transition. This em-
bodies a clear separation between probability and nondeterminism, and is represented by transitions of the form s

a−→ μ, 
where s is a state, a is an action label, and μ is a probability measure on states. Labeled transition systems are instances of 
this model family, obtained by restricting to Dirac measures (assigning full probability to single states). Thus, foundational 
concepts and results of standard concurrency theory are retained in full and extend smoothly to the model of probabilistic 
automata. The PA model is akin to Markov decision processes (MDPs) [3], and its foundational beauty can be paired with 
powerful model checking techniques, as implemented for instance in the PRISM tool [4]. Variations of this model are La-
beled Concurrent Markov Chains (LCMCs) and alternating Models [5–7]. We refer the interested reader to [8] for a survey 
on PAs and other models.

If facing a concrete probabilistic system, we can conceive several different PA models to reflect its behavior. For instance, 
we can use different state names, encode diverse information in the states, represent internal computations with different 
action labels and/or different granularity, and so on. Bisimulation relations constitute a powerful tool allowing us to check 
whether two models describe in some sense the same system. They are then called bisimilar. The bisimilarity of two systems 
can be viewed in terms of a game played between a challenger and a defender. In each step of the infinite bisimulation 
game, the challenger chooses one automaton, makes a step, and the defender matches it with a step of the other automaton.
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Depending on how we want to treat internal computations, this leads to strong and weak bisimulations [9]: the former 
requires that each single step of the challenger automaton is matched by an identically labeled single step of the defender 
automaton, the latter allows the matching up to internal computation steps. These probabilistic bisimulations can be twisted 
by allowing (or disallowing) the defender to match the challenger’s step by a convex combination of enabled probabilistic 
transitions. That corresponds to the use of randomized schedulers, as we will explain below. It results in a spectrum of four 
bisimulations: strong [1,6,5], strong probabilistic [1], weak [7,1], and weak probabilistic [1] bisimulation.

In the classical setting, branching bisimulation [10] is often advocated as a refined alternative to weak bisimulation. It 
shares all the core properties, but is finer in that it requires that internal computation steps to be considered irrelevant may 
not pass through intermediate states with distinguishable behavior. Among others, this has benefits with respect to logical 
characterizations, and these benefits carry over to the setting of probabilistic automata, yielding branching probabilistic 
bisimulation [11].

Besides comparing automata, bisimulation relations allow us to reduce the size of an automaton without changing its 
properties (i.e., with respect to sets of logic formulae satisfied by it). This is particularly useful to alleviate the state explo-
sion problem notoriously encountered in model checking, provided efficient decision algorithms exist that can be used as 
minimization algorithms.

The efficiency of PA bisimulation decision algorithms is therefore of great interest, and several results have appeared in 
the literature. With respect to the strong relations, both strong and strong probabilistic bisimulations can be decided in 
polynomial time [12,13]. The situation relative to the weak bisimulation relations is more intricate: For PA weak bisimu-
lation, there is no known decision algorithm; however, as shown in [14], PA weak bisimulation is not transitive and this 
severely limits its usefulness and the need of a decision algorithm. On the other hand, weak probabilistic bisimulation is 
indeed transitive. The only known decision algorithm for it is exponential [13] in the size of the probabilistic automaton. 
On the other hand, weak bisimulation on LCMCs can be computed in polynomial time [7]. In LCMCs, there is a strict sep-
aration of states with nondeterministic choices (over the transition to perform) and states with probabilistic effects, and 
this separation is exploited to arrive at polynomiality of the decision algorithm. Similarly to the weak bisimulation, also the 
branching bisimulation on alternating LCMCs can be decided in polynomial time [15] while no decision algorithm is known 
for PA branching probabilistic bisimulation.

In this context, it is worth to note that LCMC weak bisimulation [7] and PA weak probabilistic bisimulation [1] coincide 
[16] provided the LCMC is seen as an alternating PA in the sense that each PA state enables either a single transition leading 
to a probability measure over states, or possibly multiple transitions each with a single target state (or none at all). This 
alternation constraint on the structure of the PA is understood to be enough to reduce the complexity of the published 
decision procedure [13]. It enables to characterize states by their maximal jump probabilities per equivalence class, while 
this is not the case in general. As a consequence. the approach proposed in [7] cannot be used for ordinary PAs, see [13] for 
more details. Restricted versions of PA weak probabilistic bisimulations, such as normed [17] and delay [18] bisimulation, 
can be decided in polynomial time.

Lately, the model of PA has been enhanced with memoryless continuous time, integrated into the model of Markov 
automata [19–21]. This extension is also rooted in interactive Markov chains (IMCs) [22], another model with a well-
understood compositional theory. IMCs are applied in a large spectrum of practical applications, ranging from networked 
hardware on chips [23] to water treatment facilities [24] and ultra-modern satellite designs [25]. The standard analysis 
trajectory for IMCs revolves around compositional applications of weak or branching bisimulation minimization, a strategy 
that employs polynomial time decision algorithms [22,26] and has been proven very effective [27,28,23]. Owed to the un-
availability of effective algorithms for PA weak and branching probabilistic bisimulations, this compositional minimization 
strategy has thus far not been explored in the PA (or MDP) setting. We aim at making this possible, and furthermore, we in-
tend to repeat and extend the successful applications of IMCs in the extended Markov automata setting. For this, polynomial 
time decision procedures for weak or branching probabilistic bisimulation on PA are the essential building blocks.

In this paper we show that PA weak probabilistic and branching probabilistic bisimulations can be decided in polynomial 
time, thus just as all other interesting bisimulations on PA. To arrive there, we provide a decision procedure that follows 
the standard partition refinement approach [13,29,30] and that is based on a Linear Programming (LP) problem. The crucial 
step is that we manage to generate and decide an LP problem that proves or disproves the existence of a weak step in 
time polynomial in the size of an automaton which in turn encodes a weak transition linear in its size. This enables us to 
decide in polynomial time whether the defender has a matching weak transition step - opposed to the exponential time 
required thus far [13] for this. Apart from this result, which closes successfully the open problem of [13], we show how the 
LP approach can be extended to branching steps and hence to branching probabilistic bisimulation. We further harvest the 
approach to decide in polynomial time the single-sided versions of the relations in question, weak probabilistic simulation 
and branching probabilistic simulation. As a result, the techniques developed in this paper provide a blueprint for deciding 
in polynomial time further weak relations from the simulation and bisimulation spectrum [31] in the context of probabilistic 
automata.

Organization of the paper. After the mathematical preliminaries in Section 2, we present in Section 3 the probabilistic 
automata model and the behavioral relations defined on it. Then, in Section 4, we recast the algorithm proposed in [13] that 
decides whether two probabilistic automata are weak probabilistic bisimilar and we present the algorithms for both weak 
probabilistic bisimulation and simulation, together with their complexity analysis. In Section 5 we introduce the polynomial 
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