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In this paper, we study a model of quantum Markov chains that is a quantum analogue 
of Markov chains and is obtained by replacing probabilities in transition matrices with 
quantum operations. We show that this model is very suited to describe hybrid systems 
that consist of a quantum component and a classical one. Indeed, hybrid systems are often 
encountered in quantum information processing. Thus, we further propose a model called 
hybrid quantum automata (HQA) that can be used to describe the hybrid systems receiving 
inputs (actions) from the outer world. We show the language equivalence problem of HQA 
is decidable in polynomial time. Furthermore, we apply this result to the trace equivalence 
problem of quantum Markov chains, and thus it is also decidable in polynomial time. 
Finally, we discuss model checking linear-time properties of quantum Markov chains, and 
show the quantitative analysis of regular safety properties can be addressed successfully.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As we know, Markov chains as a mathematical model for stochastic systems play a fundamental role in computer sci-
ence and even in the whole field of information science. A Markov chain is usually represented by a pair (P , π0) where 
π0 is a vector standing for the initial state of a stochastic system, and P is a stochastic matrix1 characterizing the evolu-
tion of the system. Over the past two decades, quantum computing and quantum information have attracted considerable 
attention from the academic community. Then it is natural to study the quantum analogue of Markov chains. Actually, the 
terminology “quantum Markov chains” has appeared many times in the literature [1,2,9,8,17,28], although it does not mean 
exactly the same thing in different references. A usual approach to defining quantum Markov chains is to view a quantum 
Markov chain as a pair (E, ρ0) where ρ0, a density operator, denotes an initial state of a quantum system, and E is a 
trace-preserving quantum operation that characterizes the dynamics of the quantum system. This resembles very closely a 
classical Markov chain represented by a pair (P , π0). Indeed, in the textbook [19], when quantum operations were intro-
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1 In this paper, a matrix is said to be a stochastic matrix if each column of it is a probabilistic distribution.
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duced, they were viewed as a quantum analogue of Markov processes. In [17,28], a quantum Markov chain means the same 
thing as mentioned here, while it mainly means a quantum walk in [1].

In this paper, we focus on the quantum Markov model reported in [9,8] which is greatly different from the one men-
tioned above but will be shown to be very suited to describe hybrid systems that consist of a quantum component and a 
classical one. Such a quantum Markov chain can be roughly represented by a pair (M, μ0) where M is a transition matrix 
resembling P in a classical Markov chain but replacing each transition probability with a quantum operation and satisfying 
the condition that the sum of each column of M is a trace-preserving quantum operation. μ0, standing for the initial state of 
the model, is a vector with each entry being a density operator up to a factor. This model looks very strange at first glance, 
but it has the same expressive power as the conventional one given by (E, ρ0). Specially, we will show that this model is 
very suited to describe hybrid systems that consist of a quantum component and a classical one. Indeed, hybrid systems 
are often encountered in quantum computing and quantum information, varying from quantum Turing machines [26] and 
quantum finite automata [14,22] to quantum programs [24] and quantum protocols such as BB84. Quantum engineering 
systems developed in the future will most probably have a classical human-interactive interface and a quantum processor, 
and thus they will be hybrid models. Therefore, it is worth developing a theory for describing and verifying hybrid systems.

In order to describe hybrid systems that receive inputs or actions from the outer world, we propose the notion of 
hybrid quantum automata (HQA) that generalize semi-quantum finite automata or other models studied by Ambainis and 
Watrous, and Qiu etc. (see e.g. [3,5,21,30,31,29]). In fact, these automata in the mentioned references as hybrid systems 
have been described in a uniform way by the authors [14]. When viewing HQA as language acceptors, we show their 
language equivalence problem is decidable in polynomial time by transforming this problem to the equivalence problem 
of probabilistic automata. Furthermore, we apply this result to the trace equivalence problem of quantum Markov chains, 
showing the trace equivalence problem is also decidable in polynomial time.

Finally, we consider model checking linear-time properties of hybrid systems that are modeled by quantum Markov 
chains. We show that the quantitative analysis of regular safety properties can be addressed as done for stochastic systems, 
by transforming it to the reachability problem that can be addressed by determining a least solution of a system of linear 
equations. For general ω-regular properties, the similar technical treatments used for stochastic systems no longer take 
effect for our purpose, and some new techniques need to be explored in the further study.

2. Preliminaries

A Hilbert space is usually denoted by the symbol H. dim(H) stands for the dimension of H. Let L(H) be the set 
of all linear operators from H to itself. A∗ , A† and A� denote respectively the conjugate, the conjugate-transpose, and 
the transpose of operator A. The trace of A is denoted by Tr(A). A ∈ L(H) is said to be positive, denoted by A ≥ 0, if 
〈ψ |A|ψ〉 ≥ 0 for any |ψ〉 ∈H. A ≥ B if A − B is positive. Let

P(H) = {A ∈ L(H) : A ≥ 0}.
Given a nonempty and countable set S , let

DistH(S) = {μ : S → P(H) :
∑
s∈S

Tr(μ(s)) = 1}.

Elements in DistH(S) are called positive-operator valued distributions.
The detailed background on quantum information can be referred to the textbook [19] and lecture notes [27]. Here 

we just introduce briefly some necessary notions. States of a quantum system are described by density operators that are 
positive operators having unit trace. Let

D(H) = {A ∈ P(H) : Tr(A) = 1},
which denotes the set of all density operators on Hilbert space H. An element in D(H) is generally indicated by the 
symbol ρ . A positive operator with trace less than 1 is called a partial quantum state.

A mapping E : L(H) → L(H) is called a super-operator on H. E is said to be trace-preserving if Tr(E(A)) = Tr(A) for all 
A ∈ L(H). Let IH and 0H denote the identity and zero super-operators, respectively, and if H is clear from the context 
the subscript H is omitted. For two super-operators E and F , their summation, subtraction and multiplication, denoted by 
E +F , E −F and E ◦F , respectively, are defined by

(E +F)(A) = E(A) +F(A),

(E −F)(A) = E(A) −F(A),

E ◦F(A) = E(F(A))

for all A ∈ L(H). We always omit the symbol ◦ and write EF simply for E ◦ F . The relation � between super-operators 
on H is defined by: E �F if Tr(E(ρ)) = Tr(F(ρ)) for all ρ ∈D(H).
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