
Future Generation Computer Systems 28 (2012) 1045–1057

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

PFRF: An adaptive data replication algorithm based on star-topology data grids
Ming-Chang Lee a, Fang-Yie Leu b, Ying-ping Chen a,∗

a Department of Computer Science, National Chiao Tung University, Taiwan
b Department of Computer Science, Tunghai University, Taiwan

a r t i c l e i n f o

Article history:
Received 5 November 2010
Received in revised form
5 July 2011
Accepted 5 August 2011
Available online 6 November 2011

Keywords:
Data grid
Data replication
Data access patterns
File popularity
PFRF

a b s t r a c t

Recently, data replication algorithms have been widely employed in data grids to replicate frequently
accessed data to appropriate sites. The purposes are shortening file transmission distance and delivering
files from nearby sites to local sites so as to improve data access performance and reduce bandwidth
consumption. Some of the algorithms were designed based on unlimited storage. However, they might
not be practical in real-world data grids since currently no system has infinite storage. Others were
implemented on limited storage environments, but none of them considers data access patterns which
reflect the changes of users’ interests, and these are important parameters affecting file retrieval efficiency
and bandwidth consumption. In this paper, we propose an adaptive data replication algorithm, called
the Popular File Replicate First algorithm (PFRF for short), which is developed on a star-topology data
grid with limited storage space based on aggregated information on previous file accesses. The PFRF
periodically calculates file access popularity to track the variation of users’ access behaviors, and then
replicates popular files to appropriate sites to adapt to the variation.We employ several types of file access
behaviors, including Zipf-like, geometric, and uniform distributions, to evaluate PFRF. The simulation
results show that PFRF can effectively improve average job turnaround time, bandwidth consumption
for data delivery, and data availability as compared with those of the tested algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Generally, a data grid, a specific grid system that provides users
with a huge amount of storage space, often maintains a high
volume of distributed data to serve users. Many recent large-scale
scientific systems [1–4] and commercial applications [5], e.g., the
Biomedical Informatics Research Network (BIRN) [6], the Large
Hadron Collider (LHC) [7], the DataGrid Project (EDG) [8], and
physics data grids [9,10], have collected a huge amount of data and
performed complex experiments and analyses on the data [11–13].

According to the Pareto principle (also known as the 80/20
rule) [14], a part of data grid files is frequently accessed and
transferred. If a file has no replicas distributed over the data grid,
the efficiency of accessing the file is often poor since long distance
data transfer always occupies a lot of bandwidth and causes long
transmission delays [15]. Hence, how to decrease data access
latency, lower bandwidth consumption for data transmission, and
improve data availability have been the key issues in data grid
research [16]. Data replication is a general and simple approach to
achieve these goals. It has been widely used in many areas, such as

∗ Corresponding author.
E-mail addresses:mingchang1109@gmail.com (M.-C. Lee), leufy@thu.edu.tw

(F.-Y. Leu), ypchen@nclab.tw, ypchen@cs.nctu.edu.tw (Y.-p. Chen).

the Internet, peer-to-peer systems, and distributed databases [17–
21]. A well-defined data replication method should meet the
requirements of being able to determine an appropriate time to
replicate files, decide which files should be replicated, and store
these replicas in appropriate locations [15,16,22–24].

On the other hand, the analyses of data access patterns
have been the critical steps in designing efficient dynamic data
replication schemes [25–27]. Several distributions have been used
to model data access patterns, defined as the distribution of access
counts on files of a system, and file popularity, defined as howoften
a file is accessed by users, i.e., how popular a file is [28,29]. Breslau
et al. [28] claimed that using the Zipf-like distribution can more
accurately model the distribution of webpage accesses. Cameron
et al. [29] showed that the distribution of file accesses in data grids
follows the Zipf-like distribution. Ranganathan and Foster [22,
30] claimed that the geometric distribution can properly model
file access behaviors and the property of temporal/geographical
locality.

Further, Ranganathan and Foster [31] derived file popularity
by using both Zipf and geometric distributions on a multi-tier
data grid with unlimited storage space. Tang et al. [23] also used
Zipf-like and geometric distributions to simulate users’ file access
behaviors on a multi-tier data grid. Chang et al. [32,24] proposed
two data replication strategies on a cluster-based data grid with
limited storage. However, the strategy they proposed in [32] did

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.015

http://dx.doi.org/10.1016/j.future.2011.08.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mingchang1109@gmail.com
mailto:leufy@thu.edu.tw
mailto:ypchen@nclab.tw
mailto:ypchen@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.future.2011.08.015


1046 M.-C. Lee et al. / Future Generation Computer Systems 28 (2012) 1045–1057

not consider the data access pattern. Hence, it might lead to
inefficient data access as the users’ access pattern changes; the
strategy proposed in [24] only replicates the file most frequently
accessed in the last time period, consequently resulting in long file
transmission delays for those files with similar but low weights.

In this study, we propose an adaptive data replication
algorithm, called the Popular F ile Replicate F irst algorithm (PFRF
for short), which is developed on a star-topology data grid with
limited storage space. A star-topology data grid is a simplified tree-
topology data grid with a central cluster that connects all other
clusters. A link l between two arbitrary clusters will go through the
central cluster, and l might comprise several routers, and physical
links. Directly evaluating the components of l is difficult since too
many analytical items might be involved. Hence, this study treats
l as a logical link to simplify the original topology as a whole [33,
34]. The simplification process will be proposed. To adapt to the
changes of users’ interests in files, the PFRF aggregates file access
information and replicates popular files to suitable clusters/sites.
We simulate several cases in which file popularity follows a Zipf-
like distribution, geometric distribution, and uniform distribution
under the assumption that user behaviors vary with the changes
of users’ interests. The simulation results show that PFRF provides
users with a system that has higher data availabilities, lower data
transmission delays, and less bandwidth consumption for data
access.

The rest of the paper is organized as follows. Section 2
introduces background and related work of this study. Section 3
describes the architecture of a star-topology data grid and the
details of the PFRF. Simulation results are presented and discussed
in Section 4. Section 5 concludes this article and addresses our
future research.

2. Background and related work

In this section, we describe the architectures of data grids and
several existing replication strategies and algorithms.

2.1. Data grid architecture

Data grids can be classified into multi-tier data grids, first
proposed by the MONARC project [35], and cluster data grids,
initially introduced by Chang et al. [32]. The multi-tier data
grid architecture in which a leaf node represents a user or a
computational node, and internal nodes are resource sites keeping
sharable files. In this architecture, a file held by a site will also
be held by all its ancestor sites. Therefore, the root site holds all
files stored in the data grid. When an end user requires a file F
which does not exist in his/her site, the user requests F from its
immediate ancestor. If the ancestor does not have the file, it in turn
requests F from its immediate ancestor. The process repeats until
the user obtains the file from a node which holds the file. After
that, the file will be replicated to all the nodes on this requesting
path following the reverse direction of the requests. It is clear that
file access latency can be reduced in a multi-tier data grid, but it
leads to higher storage cost since files will be redundantly stored
in multiple locations.

A cluster data grid consists of n clusters connected by the
Internet [24]. Files are stored in these clusters. Each cluster has
a header node (a header for short) responsible for managing site
information and exchanging file access information with other
cluster headers. A header periodically determineswhich file should
be replicated by computing file weights. After that, the file with
the highest weight will be replicated to clusters that need the file.
Sites in these clusters can then locally and quickly retrieve the file.
Compared with a multi-tier data grid, a cluster data grid consumes
less storage to hold files.

2.2. Existing data replication algorithms/strategies

Least Frequently Used (LFU) [36] and Most Frequently Used
(MFU) [36] are two simple dynamic replication strategies widely
used in many areas, such as disk and cache memory duplication. If
a storage device has insufficient space to hold a new file, LFU (MFU)
will be invoked to choose the files that have been the least (most)
frequently used as the victims tomake room for the newone. In the
experiments of this study, MFU and LFU are both involved, called
the MFU/LFU strategy (M/LFU for short) in which MFU is used to
choose themost frequently used files and LFU is employed to select
victims once the destination cluster has insufficient storage space
to save the replicated files.

Ranganathan and Foster [22] presented six replication/caching
strategies for a multi-tier data grid: No Replication or Caching,
Best Client, Cascading Replication, Plain Caching, Caching plus
Cascading Replication, and Fast Spread, and three types of
localities: temporal locality, geographical locality, and spatial
locality. The experimental results showed that the Fast Spread and
Cascading Replication outperform the other four strategies and
their file access latencies are shorter than those of the other four
strategies. They also found that Fast Spread (Cascading) is better
when the data access pattern is random (geographical locality).
However, the six strategies cannot avoid the disadvantages of a
multi-tier data grid, i.e., a file may be redundantly stored in a
multi-tier. In fact, the storage space utilization and access latency
are a trade-off [32]. Ranganathan and Foster [31] also proposed
a suite of job scheduling and data replication algorithms for a
multi-tier data grid and evaluated the performance of different
combinations of the replication and scheduling strategies. One
of the data replication algorithms, called DataRandom (DR for
short), replicates a file when the corresponding access frequency
exceeds a pre-defined threshold. Although DR is designed for an
unlimited storage environment, it can also be run on a limited
storage environment. DR is therefore involved in the experiments
of this study.

Tang et al. [23] introduced Simple Bottom-Up (SBU) and
Aggregate Bottom-Up (ABU) algorithms to reduce the average data
access response time for amulti-tier data grid. The basic idea of the
two algorithms is to replicate a file to sites close to its requesting
clients when the file’s access rate is higher than a pre-defined
threshold. SBU considers the file access history for individual site,
but ABU aggregates the file access history for a system. With ABU,
a node sends aggregated historical access records to its upper tiers,
and the upper tiers do the same until these records reach the root.
Due to the aggregation capability, ABU has a shorter job response
time and less bandwidth consumption than those of SBU.

Khanli et al. [37] proposed an algorithm called Predictive
Hierarchical Fast Spread (PHFS), which is an extended version of
fast spread [22], in a multi-tier data grid. PHFS utilizes spatial
locality [22,38] to predict data files required in the future,
and pre-replicates these files to suitable sites to improve the
performance of file accesses. Kunszt et al. [39] presented a
replicamanagement gridmiddleware to reduce file access/transfer
time. Their experimental results showed that this middleware
significantly reduces wide area transfer times. However, this
model was developed for multi-tier data grids with unlimited
storage space.

Chang et al. [24,32] presented two dynamic replication strate-
gies, Latest Access Largest Weight (LALW) [24] and Hierarchical
Replication Strategy (HRS) [32], on cluster-based data grids. LALW
utilizes the half-life concept to evaluate file weights. A file with a
higher access frequency has a larger weight. Their experimental
results show that LALW outperforms LFU and no-replication data
replication strategies [22] in network utilization and efficiency.
However, LALW only replicates the most popular file in each time



Download	English	Version:

https://daneshyari.com/en/article/425999

Download	Persian	Version:

https://daneshyari.com/article/425999

Daneshyari.com

https://daneshyari.com/en/article/425999
https://daneshyari.com/article/425999
https://daneshyari.com/

