
Future Generation Computer Systems 28 (2012) 1110–1120

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A weighted-fair-queuing (WFQ)-based dynamic request scheduling approach in
a multi-core system
Guohua You, Ying Zhao ∗

College of Information Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, PR China

a r t i c l e i n f o

Article history:
Received 18 November 2010
Received in revised form
15 April 2011
Accepted 13 July 2011
Available online 3 November 2011

Keywords:
Dynamic requests
Scheduling
Web server
Multi-core
Threads
Hard affinity

a b s t r a c t

A popular website is expected to simultaneously deal with a large number of dynamic requests in the
reasonable mean response time. The performance of websites mainly depends on hardware performance
and the processing strategy of dynamic requests. In order to improve the hardware performance, more
and more web servers are adopting multi-core CPUs. Moreover, the scheduling algorithm of requests on
the first-come–first-served (FCFS) basis is still utilized. Although FCFS is a reasonable and fair strategy
for request sequences, it takes into account neither the distribution of the dynamic request service times
nor the characteristics of multi-core CPUs. In the present paper, in order to solve the above-mentioned
problems, a new dynamic request scheduling approach is proposed. The new scheduling approach,
according to the distribution of the dynamic request service time, schedules the dynamic requests based
on a weighted-fair-queuing (WFQ) system, and exploits the performance of multi-core CPUs by means
of the hard affinity method in the O/S. Simulation experiments have been done to evaluate the new
scheduling approach, and the results obtained prove that the new scheduling approach could eliminate
the ping-pong effect and efficiently reduce the mean response time.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

With the huge development of the Internet industry, people are
more like to rely on the web for their daily activities such as e-
commerce, online banking, stock trading, reservation, and product
merchandising. Consequently, popular web sites are expected to
deal simultaneously with large numbers of requests without no-
ticeable reduction of the response time performance. Moreover,
dynamic and personalized content delivery has been increased
sharply with the application of server-side scripting technologies.
Web pages incorporating the latest customized information are
generated dynamically, but they are not cacheable. So the gen-
eration of these dynamic web pages is heavy to load on the web
server. Furthermore, with the progress of broadband communi-
cation technology, web servers tend to become performance bot-
tlenecks. The performance of web servers mainly depends on the
hardware and the scheduling strategy of requests.

At the same time, with the development of multi-core tech-
nology, web servers have mostly adopted multi-core CPUs to
improve the hardware performance in the past few years. A multi-
core system integrates two or more processing cores into one sil-
icon chip [1–3]. In this type of design, every processing core has
its own private L1 cache and shared L2 cache [4,5]. All the process-
ing cores share themainmemory and the system bandwidth. Fig. 1

∗ Corresponding author.
E-mail address: guohua.yau@gmail.com (G. You).

shows the architecture in a multi-core system. When web servers
adopt multi-core CPUs, there will be some new problems.

There is usually one or more thread pool in the web server, in
which threads are usually in the blocking state. When a request
arrives at the thread pool, the web server fetches a blocked thread
from the thread pool, and then assigns the request to the thread
and finally executes the thread. The processing result is saved
into the I/O buffer queue, and then sent to the network under
scheduling by the I/O management module. This is the procedure
of theweb server,which ismodeled in the light of queuing network
theory [6]. The procedure is shown in Fig. 2.

Obviously, the web server is a service application including
multiple threads. To improve the service performance in multi-
core web servers, the scheduling strategy of multiple threadsmust
take into account the characteristics of the multi-core CPUs. If
there are multiple threads in the multi-core system, the O/S will
usually assign these threads to different cores due to consideration
of performance improvement and load balance [7]. But, in some
cases, thiswould not result in goodperformance. Generally,when a
thread is running, the O/S will transfer its data frommain memory
or the L2 cache to its private L1 cache. If both threads have shared
data and the O/S assigns the threads to different cores, the O/S will
continually transmit the shared data of the threads back and forth
between the private L1 caches of the cores during the execution of
the threads. This is the ping-pong effect, whichwill greatly degrade
the performance of the multi-core system. Usually, there are a
lot of dynamic requests that ask for the same dynamic page in a

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.07.006

http://dx.doi.org/10.1016/j.future.2011.07.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:guohua.yau@gmail.com
http://dx.doi.org/10.1016/j.future.2011.07.006


G. You, Y. Zhao / Future Generation Computer Systems 28 (2012) 1110–1120 1111

Fig. 1. The architecture of multi-core CPUs.

multi-core web server. When the threads that deal with these
dynamic requests are assigned to different cores, this easily gives
rise to the ping-pong effect.

Another factor that influences the performance of a web server
is the scheduling strategy of requests. The requests of a web server
usually are of two types.

Static requests: these request a file (including media files) from
the web server.

Dynamic requests: these request some kind of processing from
the serverweb. The processing is usually programmed in the server
using a script language (JSP, ASP, etc.) and the result is usually a
generated dynamic page [8].

Usually, the processing of the static requests is simple. The
procedure has two steps: reading a file from a disk or cache and
transferring it through thenetwork interface. The disk andnetwork
resources are the main bottlenecks for this type of web object. The
service time of the static request is proportional to the size of the
file [9]. But the processing of the dynamic requests is complicated.
Many dynamic requests include some personalized information
(such as location andpersonal data), so the contents of the dynamic
requests cannot be known in advance and must be retrieved from
the web servers. They must be generated dynamically each time
and cannot be fully cached [10]. In general,many dynamic requests
are very simple, and they do not require intensive server resources,
such as sum of bill items, but some dynamic requests are very
complex, and they require intensive use of web server resources,
such as the content of an e-commerce secure site which require
Secure Socket Layer Protocol (SSL) processing with intensive CPU
use. So the service time of the dynamic requests differs greatly, and
usually is a heavy-tailed distribution [8]. In the present paper, we
mainly discuss dynamic requests.

Many request scheduling strategies have been proposed.
Cherkasova [11] proposed using shortest-job first (SJF) scheduling
for static requests. In 1998, the α scheduling strategy was
developed at HP Labs [11]. Schroeder and Harchol-Balter [12]
demonstrated an additional benefit using the shortest remaining
processing time (SRPT) for static requests. Elnikety et al. [13]
proposed preferential scheduling for dynamic requests in a

transparent fashion. And they addressed the starvation question
by using an aging mechanism to prevent starvation.

Actually, most servers, e.g. Apache [14], employ the first-
come–first-served (FCFS) strategy. FCFS is fair and starvation
free [15], but it is a traditional system-centric scheduling ap-
proach [16] and it cannot consider the characteristics ofmulti-core
web servers and the distribution of the dynamic request service
times. As a consequence, we propose a new dynamic request
scheduling approach in a multi-core web server, which fully con-
siders the distribution of the dynamic request service times and
the characteristics of the multi-core web server, and improves the
performance of the multi-core web server in an efficient manner.

The remainder of the paper is organized as follows. Section 2
introduces the related work. The new dynamic request scheduling
approach is described in Section 3. Section 4 introduces the
simulation experiments of the new approach and presents an
evaluation of the performance. And finally, we present our
conclusions and future work in Section 5.

2. Related work

2.1. Request scheduling strategy

In this section, some proposed request scheduling strategies are
introduced. FCFS is a fair strategy, but SJF and SRPT have shorter
average waiting time [17]. In addition, α scheduling and weighted
fair queuing are also introduced.

(1) First-come–first-served (FCFS): In the FCFS strategy, re-
quests are handled in the sequence of their arrival time. FCFS is
fair, but it takes a long time to process the large files that are newly
arriving. As a result, the overall average waiting time increases.

(2) Shortest-job first (SJF): In SJF, requests with small service
time have precedence over requests with longer service time. In
this way, the overall mean waiting time is reduced. However, SJF
needs to know the service time of requests beforehand. Because
requests with longer service time have lower priority, there will
be starvation on long-term heavily loaded web servers, i.e., when
there are many requests for small files in the web server.

(3) Shortest remaining processing time (SRPT) [18]: In SRPT,
the request with the least remaining processing time is scheduled
and processed with precedence over requests with a longer
processing time. Each request is divided into sub-requests, only
the first of which is scheduled at the request arrival time. The
next sub-request is qualified to be scheduled only if its previous
request has been completed. This scheme approximates round-
robin scheduling. Like SJF, SRPT unfairly penalizes requests with
longer processing time in order to give priority to requests with
shorter remaining processing time.

(4) α scheduling: α scheduling is a scheduling strategy
that is adjustable between (fair and starvation-free) FCFS and

Fig. 2. Basic model of a web server [6].



Download English Version:

https://daneshyari.com/en/article/426005

Download Persian Version:

https://daneshyari.com/article/426005

Daneshyari.com

https://daneshyari.com/en/article/426005
https://daneshyari.com/article/426005
https://daneshyari.com

