Future Generation Computer Systems 28 (2012) 128-135

Future Generation Computer Systems

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/fgcs e

Adaptive heterogeneous language support within a cloud runtime

Kathleen Ericson*, Shrideep Pallickara
Department of Computer Science, Colorado State University, Fort Collins, CO 80523, United States

ARTICLE INFO

Article history:

Received 30 December 2010
Received in revised form

10 May 2011

Accepted 28 May 2011
Available online 6 June 2011

ABSTRACT

Keywords:
Adaptive behavior
Cloud runtime
Granules
Language bridges

Cloud runtimes are an effective method of distributing computations, but can force developers to use
the runtime’s native language for all computations. We have extended the Granules cloud runtime with
a bridge framework that allows computations to be written in C, C++, C#, Python, and R. We have
additionally developed a diagnostics system which is capable of gathering information on system state, as
well as modifying the underlying bridge framework in response to system load. Given the dynamic nature
of Granules computations, which can be characterized as long-running with intermittent CPU bursts that
allow a state to build up during successive rounds of execution, these bridges need to be bidirectional and
the underlying communication mechanisms decoupled, robust and configurable. Granules bridges handle
a number of different programming languages and support multiple methods of communication such as
named pipes, unnamed pipes, and sockets. This choice of underlying communication mechanisms allows
limited resources, such as sockets, to remain available for use by the runtime.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cloud runtimes with their support for orchestrating computa-
tions (some of which are based on the MapReduce framework [1])
have gained significant traction in the past few years. Though the
cloud runtime may be developed in a specific programming lan-
guage, the need often arises to orchestrate computations that have
been developed in other programming languages. Here we de-
scribe our support for heterogeneous languages within Granules.

Granules [2,3] is a Java-based lightweight runtime for cloud
computing and is designed to schedule a large number of
computations across a set of available machines. Granules has
support for both MapReduce and dataflow graphs [4]. Granules
computations change state depending on the availability of data
on any of their input datasets or as a result of external triggers.
When the processing is complete, computations can become
dormant, waiting for further data to process. This allows Granules
to move away from the run-once semantics of frameworks such as
Hadoop [5].

In Granules, computations specify a scheduling strategy, which
govern their lifetimes. Computations scheduling strategies are de-
fined across three dimensions: number of iterations, data availabil-
ity, or periodicity. The number of iterations limits the maximum
amount of times a computation can be executed. The data avail-
ability axis schedules computations as data becomes available on

* Corresponding author.
E-mail addresses: ericson@cs.colostate.edu (K. Ericson),
shrideep@cs.colostate.edu (S. Pallickara).

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.05.012

any input streams the computation has registered to listen to. The
user can also specify that a computation should be executed on a
specific interval. It is also possible to specify a custom scheduling
strategy that is a combination along these three dimensions: e.g. A
computation should execute no more than 1000 times, as data is
available, or every 500 ms. A computation can change its schedul-
ing strategy during execution, and Granules will enforce the newly
established scheduling strategy during the next round of execu-
tion.

Computations in Granules can build state over successive
rounds of execution. Though the typical CPU burst time for com-
putations during a given execution is short (seconds to a few
minutes), these computations may be long-running with computa-
tions toggling between periods of activity and dormancy. Domains
that Granules is being deployed in include earthquake science, epi-
demiological simulations, and brain-computer interfaces [6].

While the Granules Bridge framework has been developed to
work within Granules, we have found our design flexible enough
to work in a basic Java environment as well as with Hadoop with
millisecond overheads.

Here we describe our framework to incorporate support for
computations developed in diverse programming languages
within Granules. There are three important challenges that we
address.

Challenge 1: Semantics of communications between bridged compu-
tations should be independent of the mechanism to implement them.

Bridges can be implemented in different ways. Computations in
different languages should be able to use named pipes, unnamed
pipes, sockets, or shared memory for communications with each
other. We must abstract the content from the channel used to


http://dx.doi.org/10.1016/j.future.2011.05.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ericson@cs.colostate.edu
mailto:shrideep@cs.colostate.edu
http://dx.doi.org/10.1016/j.future.2011.05.012

K. Ericson, S. Pallickara / Future Generation Computer Systems 28 (2012) 128-135 129

implement these bridges. This allows us to introduce additional
channels without having to recode the semantics of the data
exchanged over the channel. An additional requirement here
is for these semantics of communications to be lightweight
and bidirectional while introducing acceptable overheads. The
overheads introduced should not preclude the possibility for
developing real-time applications in other languages.

Challenge 2: Account for resource usage at individual machines.

Granules is designed to support data driven computations.
Computations are scheduled for execution when data is available
on one of their input streams, and held dormant otherwise.
Although the CPU bound processing time for individual packets
of a data stream may be on the order of milliseconds, the
computations are long running in the sense they are scheduled
for multiple rounds of execution when incoming data packets are
generated over a prolonged duration. For example, one of our
benchmarks involves a Brain Computer Interface (BCI) application
where the user’s EEG data streams would be produced continually.
Since all computations are not active at all times, Granules is
capable of interleaving a large number (up to 10,000) of such
computations concurrently on the same resource to maximize
resource utilizations while processing streams.

Over time the availability of system resources and the ac-
companying performance overheads associated with using them
can change. Bridges to other languages need to account for such
changes. For example, (1) when a large number of processes use
disk I/O for communications contentions will result in reduced re-
sponse times, (2) if the number of sockets being used increases sub-
stantially configured OS thresholds would be breached resulting in
errors, and (3) if shared memory is being used exclusively for com-
munications it would result in reduced memory for applications
that need them too. Since system conditions change dynamically,
the framework must respond to these changes autonomously to
ensure sustained system throughput.

Challenge 3: Support reusability.

Once a bridge to a language has been developed, this bridge
functionality should be accessible to all computations written
in that language. The framework needs to be reusable without
requiring rewrites. Existence of a bridge to a language should
imply that development of computations in that language should
be just as simple as developing those in the runtime’s native
language. In object oriented terms, the bridge should be a base class
that implements all functionality expected of computations in the
native language; this base class would then be extended as needed
for specific computations developed in that language.

1.1. Paper contributions

The Granules Bridge framework provides a mechanism for de-
velopers to bridge computations developed in diverse languages.
Computations use the bridge to transfer information about state
transitions, input datasets, results of the processing, and any er-
rors/exceptions that occurred during the processing. We sup-
port incorporation of different communication mechanisms across
bridges. Currently, our bridges to C, C++, C#, and Python can com-
municate via pipes. C, C++, C#, Python and R can additionally com-
municate using TCP; support for datagram sockets and shared
memory is ongoing. This paper makes the following contributions:

Broad applicability: Though this framework was developed for
a specific runtime, there is nothing here that would preclude its
applicability in systems that share the need to incorporate support
for other languages. For example, we have incorporated support
for this framework within Hadoop, and our measured overheads
here are similar to what we see in Granules. Finally, Granules is
open-source and this framework has been released as part of the
runtime.

Suitability to data driven computations: By dynamically adapting
the communication mechanisms to changing system conditions
over a period of time, computations may use a different mechanism
during different rounds of execution.

Support for multiple languages: We have incorporated support
for different bridging mechanisms to languages such as C, C++, C#,
Python and R. This allows the runtime to orchestrate computations
developed in different languages. This could also be used to
create bridges that span multiple languages: for example, one may
use Java as an intermediary for communications between R and
Python. We have not yet benchmarked the costs for doing so.

Responsiveness to varying system conditions: The framework
is lightweight and relies on diagnostics to autonomously tune
communication mechanisms based on specified directives.

1.2. Organization

In Section 2, we describe the related work in this area. In
Section 3 we provide details about the Granules Bridge framework
as well as the Diagnostics and Adaptive Systems. We describe our
experiments and report on our benchmarks in Section 4. Finally,
we provide our conclusions and discuss future work in Section 5.

2. Related work

Purpose-specific wrappers are the general approach to solving
communication problems between languages on a machine. While
this means that wrappers can be written specifically for a particular
application, and can take advantage of this lack of generality, it
also means that this code is not generally reusable, and any such
code can easily become difficult to maintain when extending the
original program.

The Java Native Interface (JNI) [7] is a framework that allows
Java programs to interact with machine-specific languages and
programs from inside the JVM (Java Virtual Machine). It is designed
so that C/C++ or assembly programs and Java programs can interact
on a single machine. Downsides to this approach include (1) the
introduction of instability to the JVM, (2) a loss of portability of Java
code, and (3) the learning curve necessary to create stable code in
JNL This framework is also limited in that it only supports C/C++
and assembly programs—there is no support for other languages
such as Python or C#.

Closely related to JNI is Java Native Access (JNA) (https://
jna.dev.java.net/). JNA allows a developer to access system level
code written in C, Windows dlls, as well as Jython [8] and JRuby
(http://jruby.org/). While JNA claims to have a simpler interface,
it has been reported to run approximately 100 times slower than
equivalent JNI code.

CORBA [9] has been developed to handle communication across
different programming languages. While it has been primarily
designed to work across a network, it is possible to use it
for intra-machine communication as well. A downside of using
CORBA, however, is the need to create stubs and skeletons
which are traversed during all communications. Additionally,
communications are no longer lightweight with all the information
needed to appropriately run a command.

Additionally, MPI (Message Passing Interface) has been de-
signed to handle communications between programs executing in
parallel on a single machine. MPI uses shared memory for commu-
nications, and has a high learning curve if a developer wishes to
take advantage of all the functionality offered. While this does al-
low programs written in different languages to communicate on a
single machine, it follows a different paradigm than we generally
see in distributed computations.

An alternative approach for communications is through the use
of XML [10]. XML allows for the development of a complex, exten-
sible and self-descriptive language for communication, and would


https://jna.dev.java.net/
https://jna.dev.java.net/
https://jna.dev.java.net/
https://jna.dev.java.net/
https://jna.dev.java.net/
http://jruby.org/

Download English Version:

https://daneshyari.com/en/article/426128

Download Persian Version:

https://daneshyari.com/article/426128

Daneshyari.com


https://daneshyari.com/en/article/426128
https://daneshyari.com/article/426128
https://daneshyari.com/

