Future Generation Computer Systems 27 (2011) 703-710

Future Generation Computer Systems

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/fgcs e

Active rule learning using decision tree for resource management in

Grid computing

Leyli Mohammad Khanli, Farnaz Mahan *, Ayaz Isazadeh

Computer Science Department, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

ARTICLE INFO

ABSTRACT

Article history:

Received 11 August 2010
Received in revised form

21 December 2010

Accepted 28 December 2010
Available online 8 January 2011

Keywords:

Grid computing

Rule learning

Decision tree

Resource management

Grid computing is becoming a mainstream technology for large-scale resource sharing and distributed
system integration. One underlying challenge in Grid computing is the resource management. In this
paper, active rule learning is considered for resource management in Grid computing. Rule learning is
very important for updating rules in an active database system. However, it is also very difficult because of
a lack of methodology and support. A decision tree can be used in rule learning to cope with the problems
arising in active semantic extraction, termination analysis of the rule set and rule updates. Also our aim
in rule learning is to learn new attributes in rules, such as time and load balancing, in regard to instances
of a real Grid environment that a decision tree can provide. In our work, a set of decision trees is built in
parallel on training data sets based on the original rule set. Each learned decision tree can be reduced to
a set of rules and thence conflicting rules can be resolved. Results from cross validation experiments on a
data set suggest this approach may be effectively applied for rule learning.

Grid-JQA

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There are many definitions of Grid computing, with the most
commonly quoted definition being given by Ian Foster, “Resou-
rce sharing and coordinated problem solving in dynamic multi-
institutional virtual organizations” [1]. A Grid is a very large-scale
network computing system that can scale up to Internet size en-
vironment, in which all kinds of computing, storage and data re-
sources, as well as scientific devices or instruments, are distributed
across multiple organizations and administrative domains [2,3].
Grid computing is an emerging technology that enables users to
share a large number of computing resources distributed over a
network. In Grid environments, virtual organizations (VOs) asso-
ciate heterogeneous users and resource providers such that it is
not known how large individual VOs will be, but it is reasonable
to imagine resource sharing among populations with tens of thou-
sands of users and thousands of resources [3,4].

Supercomputers, SMPs, clusters, desktop PCs, or even mobile
computing devices such as PDAs can be computing resource in the
Grid architecture. The Grid resource management system (GRMS)
is an important component because it is responsible for storing
resource information across the Grid, accepting requests for re-
sources, discovering and scheduling suitable resources that match
the requests from the global Grid resources, and executing the re-
quests on scheduled resources. The design and implementation of

* Corresponding author. Tel.: +98 9144111803.
E-mail addresses: mahan@tabrizu.ac.ir, fa_mahan@yahoo.com (F. Mahan).

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.12.016

GRMS is challenging because the Grid is geographically distributed,
heterogeneous and autonomous in nature [1,2,4].

Any time that a set of resources needs to be allocated over a
set of users we face an NP-complete optimization problem [5].
By managing resources within the active ECA rules we minimize
the NP-complete Allocation Problem within On-Line and Off-Line
systems.

1.1. The problem

The aim is to find an adaptive resource management related to
the real-time Grid environment. The overall problem is to respond
quickly and to increase the performance of resource management.
For this aim, we need a learning system to update the resource
management rules. We need to recognize which rules should be
consolidated, which rules should be modified, and which rules
should be invalidated. Rule updating, in relation to instances must
contain:

1. The ability to change the value of some parameters in the rules.

2. The ability to add new attributes to the original rules and to
create new ones.

3. The ability to create new rules that do not conflict with the orig-
inal rules.

Upon learning our resource management must have the follow-

ing characteristics:

1. Guarantee to respond to most requests in a real Grid.

2. Respond more quickly with a learning system than without a
learning system.

3. Have a higher performance and be more adaptive with a learn-
ing system than without a learning system.

http://dx.doi.org/10.1016/j.future.2010.12.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mahan@tabrizu.ac.ir
mailto:fa_mahan@yahoo.com
http://dx.doi.org/10.1016/j.future.2010.12.016

704 L.M. Khanli et al. / Future Generation Computer Systems 27 (2011) 703-710

1.2. Motivation

In reality, resources management can be very complex, and
may require co-allocation of different resources, such as specific
amounts of CPU hours, system memory, and network bandwidth
for data transfer, etc. [3,6]. In this paper we need an active learning
database to manage the information and rules. We use Grid-]JQA,
an architecture supporting such rules in Grid environments, that
has been described in previous research [7-9]. Grid Java based
Quality of service management by Active database (Grid-JQA) is
a framework that provides workflow management for quality of
service on different types of resources, including networks, CPUs,
and disks. It also encourages Grid customers to specify their quality
of service needs based on their actual requirements [7,9].

An active database system (ADBS) is a database system that
monitors any situation of interest, and triggers an appropriate
response in a timely manner when the interesting events occur
[10,7]. The active behavior of a system is generally specified by
means of rules that describe the situations to be monitored and
the reactions of the system when these situations are encountered.
In its general form, a rule consists of a rule event, a condition
and an action, known as Event-Condition-Action rules or ECA
rules. In Grid-JQA there is an Active Grid Information Server that
automatically selects optimal resources using active database ECA
rules and requests resource allocation [10,7,11,12].

We focus on active rule learning for improving and learning
in resource management in the Grid. Active rule learning is very
important for an active database system implementation and
we also need the resource management to be updated in Grid
computing. But, it is also difficult because many problems arising
in rule learning can not be eliminated directly by using traditional
database techniques [13,14]. There is a lacks of methodology and
support for rule learning. Different representations of concepts
may be learned from a set of labeled data, such as neural networks
and decision trees [14,15]. A decision tree is useful for representing
rules and its learning is reasonably fast and accurate.

1.3. Objective and the claim

Our goal is to have an updated active resource management
after learning that is done dependently on new instances in a real
event-based environment. Hence, the architecture of our active
database has two parts: an Off-Line part and an On-Line part. The
On-Line part has static original rules and manages the resource in
real time while the Off-Line part performs learning, simulates new
examples of the environment, and creates new and updated rules
based on the original ones. We focus on 19 ECA rules, as the original
rules, that were introduced in [7,11] for resource management in
Grid-]JQA.

Some rules have static parameters that are determined by an
expert, but when these rules are used in a real time environment,
these parameters must be changed and updated, based on
instances received, in order to improve the resource management
performance. Because we receive instances at different times and
states, also we must add new attributes such as time and load
balancing to the rules. It helps that rule learning be efficient.
Our approach to learning different rules is to parallelize the
process of learning by using decision trees. In this research, the
final representation of the active Grid information server must
be ECA rules so we must create rules from decision trees. It is
straightforward to reduce a decision tree to rules. The strategy
pursued here is to break instances into n partitions based on
events, then learn a decision tree on each of the n partitions in
parallel [14,16]. A new decision tree will be grown independently
when it is needed. At each learning period in each partition, we
may have several decision trees related to each rule that must be

combined in some way. In [17], the decision trees are combined
using metalearning. Also in some partitions, there may be some
new decision trees growing independently when there are new
attributes in the instances. So the independent decision tree of each
rule can be viewed as the agents learning a little about a domain. In
our approach, after combining, each decision tree at each partition
will be converted to a rule, then the validation of the rules must
be checked according to the original rules. Also the performance
of a new rule must be evaluated. This new rule set is added to the
On-line system and then will be used to respond to new incoming
instances.

1.4. Paper outline

This paper is organized as follows: Section 2 demonstrates
related work that contains the architecture of the Grid-JQA & AGIS
ECA rule engine and decision tree. In Section 3, we describe the
active rule learning process for Resource Management in Grid-
JQA and we show the use of decision trees for rule learning. In
Section 4, we evaluate our approach. Finally, we conclude the paper
in Section 5.

2. Related works

Resources management on Grids is a complex procedure in-
volving coordinated resource sharing and responding to the re-
quirements of users. Previous research uses the matchmaking
framework implemented in Condor-G. The matchmaking proce-
dure evaluates job and resource rank and requirements expres-
sions to find ideal matches. Additional notable research in this case
uses a variety of makespan minimizing heuristics, and the GrADS
metascheduler [18]. The GridLab Resource Management System
(GRMS) is a job metascheduling and resource management frame-
work. It is based on dynamic resource discovery and selection,
mapping and scheduling methodologies. It is also able to deal with
resource management challenges [11].

The Globus resource management architecture [7] includes
an information service. It plays an important role because it
is responsible for providing the information about the current
availability and capability of resources, has a co-allocator that is
responsible for coordinating the allocation and management of
resources at multiple sites, a manager that is responsible for taking
RSL (Resource Specification Language) specification, and GRAM
(Grid Resource Allocation Management), which is responsible for
managing local resources [7].

The Grid-JQA system architecture consists of a Grid portal,
Active Grid Information Server (AGIS) (includes ECA resource
manager rules and ECA fault manager rules), a fault detector, and
GRAM. To execute a job with the Grid-JQA, a user uses RSL to
describe a resource type, a resource condition, and the number
of resources. RSL is the specification language used by the Globus
Toolkit to describe task configuration and service requirements.
Then the user sends RSL to a Grid-JQA and the RSL parser extracts
the resource type and resource condition and sends them to an
AGIS.

The main goal of using Grid-JQA is to provide seamless access
to users for submitting jobs to a pool of heterogeneous resources,
and at the same time, dynamically to monitor the resource
requirements for execution of applications [8,9].

In this paper, we used Grid-JQA, which was introduced in [7]
and is represented in Fig. 1 (taken from [7]). The resource manager
automatically selects the set of optimal resources among the set
of candidate resources using ECA rules and requests resource
allocation, thus providing convenience for a user to execute a job. It
also guarantees efficient and reliable job execution through a fault
tolerance service [7,9]. Initially, the base ECA rules are specified

Download English Version:

https://daneshyari.com/en/article/426186

Download Persian Version:

https://daneshyari.com/article/426186

Daneshyari.com

https://daneshyari.com/en/article/426186
https://daneshyari.com/article/426186
https://daneshyari.com

