
Future Generation Computer Systems 27 (2011) 781–789

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Storing, reasoning, and querying OPM-compliant scientific workflow provenance
using relational databases
Chunhyeok Lim a, Shiyong Lu a,∗, Artem Chebotko b, Farshad Fotouhi a
a Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
b Department of Computer Science, University of Texas-Pan American, Edinburg, TX 78539, USA

a r t i c l e i n f o

Article history:
Received 15 December 2009
Received in revised form
20 October 2010
Accepted 25 October 2010
Available online 4 November 2010

Keywords:
Provenance
Scientific workflow
Metadata management
OPM
OPM-compliant provenance storage
RDBMS

a b s t r a c t

Provenance, the metadata that records the derivation history of scientific results, is essential in scientific
workflows to support the reproducibility of scientific discovery, result interpretation, and problem
diagnosis. To promote and facilitate interoperability among heterogeneous provenance systems, the
Open Provenance Model (OPM) was first proposed in 2008 and since then has played an important role
in the community. In this paper, we present OPMProv, a relational database-based scientific workflow
provenance system, that is compliant with OPM (v1.1). Our main contributions are: (i) we design an
entity–relationship diagram for OPM and translate it into a relational database schema for the storage of
provenance; (ii) we show that provenance reasoning defined in OPM (v1.1) can be sufficiently supported
by OPMProv using recursive views and SQL queries alone without any additional reasoning engine.
Experiments are conducted to evaluate the performance of OPMProv in data insertion and provenance
querying. A case study is performed, demonstrating that OPMProv can answer all except two queries out
of the 16 queries defined in the Third Provenance Challenge.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Scientific workflows have become an increasingly popular
paradigm for scientists to formalize and structure complex
scientific processes to enable and accelerate many significant
scientific discoveries [1–6]. A scientific workflow is a formal
specification of a scientific process, which represents, streamlines,
and automates the analytical and computational steps that
a scientist needs to go through from dataset selection and
integration, computation and analysis, to final data product
presentation and visualization [7]. The importance of scientific
workflows has been recognized by NSF since 2006 [8] and was
reemphasized in a recent science article [9], which concluded,
‘‘In the future, the rapidity with which any given discipline
advances is likely to depend on how well the community acquires
the necessary expertise in database, workflow management,
visualization, and cloud computing technologies’’.

Scientific workflow provenance captures the derivation history
of a data product, including the sources, intermediate data prod-
ucts, and the steps that were applied to produce the data prod-
uct. Provenance is essential for scientific workflows to support

∗ Corresponding author. Tel.: +1 313 577 1667; fax: +1 313 577 6868.
E-mail addresses: chlim@wayne.edu (C. Lim), shiyong@wayne.edu (S. Lu),

artem@cs.panam.edu (A. Chebotko), fotouhi@wayne.edu (F. Fotouhi).

reproducibility of scientific discovery, result interpretation, and
problem diagnosis [10,11]. Although numerous provenance sys-
tems [12–17,7,18] have been developed, their interoperability is
poor due to the lack of a common data model for provenance. To
address this issue, the Open Provenance Model (OPM) [19] was
proposed in 2008. Since then, OPM has played an important role
in provenance interoperability and has had a positive impact on
ongoing provenance activities, including the IPAWworkshops [20]
and the Provenance Challenges [21].

While there is a growing effort in supporting OPM in existing
provenance systems [12–17] and the evaluation of OPM in a
particular domain [22,23], such as the scientific workflow domain,
most of them focus on enhancing an existing provenance system
with the import/export capability for OPM. In this paper, however,
we take OPM as a starting point and develop a native OPM
provenance store. By native, we mean that OPM is the conceptual
data model that is used to design our provenance store and the
input and output of such a store is OPM-compliant provenance
data. Therefore, our work complements the existing work whose
OPM support is based on back and forth transformations between
the OPM model and proprietary models employed by these
systems. Although using OPM as an implementation schema
belongs to one of the non-requirements defined in OPM, an OPM-
based provenance system can be useful for a scientific workflow
whose workflow tasks are subworkflows enacted by different
scientific workflow management systems. An example of such a
workflow is GENOMEFLOW [24]. In this scenario, provenance from

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.10.013

http://dx.doi.org/10.1016/j.future.2010.10.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:chlim@wayne.edu
mailto:shiyong@wayne.edu
mailto:artem@cs.panam.edu
mailto:fotouhi@wayne.edu
http://dx.doi.org/10.1016/j.future.2010.10.013


782 C. Lim et al. / Future Generation Computer Systems 27 (2011) 781–789

different scientific workflow management systems needs to be
integrated, and our OPMProv system can be used for this purpose.
OPMProv is fully compliant with OPM and can store provenance
generated by different scientific workflow management systems
that are able to recordOPM-compliant provenance. In particular, in
the Third Provenance Challenge [25], different scientific workflow
management systems, including Kepler, Taverna, and Swift, have
shown the capability to export OPM-compliant provenance data by
means of a mapping between the proprietary models and the OPM
model; such heterogeneous provenance from different workflow
management systems can be integrated in OPMProv. In our
work, we are particularly interested in using relational database
technologies to store and query OPM-compliant provenance
data. Since relational databases are not specifically designed for
inferences, we aim to investigate if we can use recursive views and
SQL queries alone to perform provenance reasoning.

This paper has the following main contributions: (1) we design
an entity–relationship diagram for OPM (v1.1) and translate it
into a relational database schema for the storage of provenance;
(2) we show provenance reasoning defined in OPM (v1.1) can
be sufficiently supported by OPMProv using recursive views
and SQL queries alone without any additional reasoning engine.
Experiments are conducted to evaluate the performance of
OPMProv in data insertion and provenance querying. A case study
is performed, demonstrating that OPMProv can answer all except
two queries out of the 16 queries defined in the Third Provenance
Challenge [25].

2. Provenance storage

In this section, we design an entity–relationship diagram for
OPM, translate it into a relational database schema for the storage
of provenance, and discuss how OPM-compliant provenance data
in the XML format can be efficiently inserted into the proposed
database schema.

2.1. Entity–relationship diagram

Based on the Open Provenance Model [26], we design an E–R
diagram that captures the conceptual model of our provenance
storage. The E–R diagram is shown in Fig. 1 and depicts three en-
tity types Process, Artifact, and Agent and five relationship types
Used,WasGeneratedBy,WasControlledBy,WasTriggeredBy, andWas-
DerivedFrom. These entity and relationship types have direct coun-
terparts in OPM. According to OPM, artifacts, processes, and agents
are identified by unique identifiers and the causal dependency
edges are identified by their sources, destinations, and roles
(for those that have roles) [26]. Thus, in the E–R diagram, each en-
tity type has a primary key attribute that is underlined and each
relationship type has a composite primary key that includes the
two roles1 of the relationship with participating entity types and
the Role attribute (for those that have the Role attribute). For exam-
ple, the primary key of relationship type Used is ProcessId, Artifac-
tId, and Role and relationship typeWasDerivedFrom takes ArtifactId
for the Effect role and ArtifactId for the Cause role as the primary
key. Each entity type has attributes Value and Account; the latter
is a set-valued attribute, such that a process, artifact, or agent can
havemultiple accounts. The relationship types have set-valued Ac-
count attributes and composite OTime attributes (OTimeStart and

1 Note that the term ‘‘role’’ is used in both E–R Diagram and OPM, but they have
slightly different meanings: roles in an E–R diagram represent the participation
relationships between an entity type and a relationship type, while roles in OPM
represent annotations on edges Used, WasGeneratedBy, andWasControlledBy.

OTimeEnd for relationship type WasControlledBy). Composite at-
tribute OTime is composed of the OTimeLower and OTimeUpper at-
tributeswhich is consistentwith theOTime annotation inOPM. The
WasControlledBy relationship type has two composite attributes
OTimeStart and OTimeEnd that are composed of (OTimeStartLower,
OTimeStartUpper) and (OTimeEndLower, OTimeEndUpper), respec-
tively. Finally, each entity/relationship type has a set-valued and
composite attribute Annotation, such that Process, Artifact, Agent,
Used,WasGeneratedBy,WasControlledBy,WasTriggeredBy, andWas-
DerivedFrom can have multiple annotations consisting of prop-
erty–value pairs defined in OPM.

2.2. Database schema

We translate our proposed E–R diagram into the database
schema that can be used for storing, reasoning, and querying the
OPM-compliant provenance data. As shown in Fig. 2, we identify
29 relations, where the first 24 of them are materialized relations
and the remaining five are non-materialized views. Relations Ar-
tifact, Process, Agent, Used,WasGeneratedBy,WasControlledBy,Was-
DerivedFrom, and ExplicitWasTriggeredBy2 are directly derived from
the E–R diagram, however, to handle the set-valued attributes Ac-
count and Annotation, additional relations are introduced, such as
the corresponding relations xxxHasAccount and xxxAnnotation. For
each relation, we introduce an OPM graph identifier (i.e., attribute
OPMGraphId) to identify multiple workflow runs for a workflow.
Being able to store multiple OPM graphs into the same schema
is an important characteristic of the provenance storage system
that allows querying and analysis of provenance recorded by mul-
tiple executions of the same or different scientific workflows. We
also restrict that each row in relations Artifact, Process, Agent, Used,
etc. has at least one account and therefore at least one row in
the corresponding xxxHasAccount relations. This participation con-
straint eliminates the burden of dealing with missing values when
computing relational joins and can be efficiently ensured on the
data insertion stage by introducing a default account. The pri-
mary keys of these 24 relations are depicted in Fig. 2. For example,
(OPMGraphId, ArtifactId) is the composite primary key of the
Artifact relation, and the ArtifactHasAccount relation has (OPM-
GraphId, ArtifactId, Account) as the primary key and (OPMGraphId,
ArtifactId) as the foreign key referencing the Artifact relation.
Similarly, the ArtifactAnnotation relation has the primary key
(OPMGraphId, ArtifactId, Property, Value) since a same property can
have multiple values as defined in OPM, and it has the foreign
key (OPMGraphId, ArtifactId) referencing the Artifact relation. Non-
materialized views in our database schema are defined as follows.
While viewWasTriggeredBy (see Fig. 3(a)) implements the one-step
inference (i.e., completion rule) defined in OPM [26], views Multi-
StepWasDerivedFrom,MultiStepWasTriggeredBy,MultiStepUsed, and
MultiStepWasGeneratedBy (see Fig. 3(b) and (c)) implement the
multi-step inferences (i.e., multi-step versions of existing edges)
presented inOPM [26]. The semantics and implementation of these
recursive views are further discussed in Section 3.

2.3. Data insertion

To insert provenance data represented in XML into OPMProv,
we employ a datamapping procedure that shreds XML documents,
which conform to the XML schema specification for OPM [27], into

2 Note that this relation corresponds to relationship type WasTriggeredBy in
the E–R diagram, but we name it ExplicitWasTriggeredBy to differentiate from
non-materialized view WasTriggeredBy which can be inferred from relations Used,
WasGeneratedBy, and ExplicitWasTriggeredBy.



Download English Version:

https://daneshyari.com/en/article/426194

Download Persian Version:

https://daneshyari.com/article/426194

Daneshyari.com

https://daneshyari.com/en/article/426194
https://daneshyari.com/article/426194
https://daneshyari.com

