
Future Generation Computer Systems 27 (2011) 843–849

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Variable-sized map and locality-aware reduce on public-resource grids
Yen-Liang Su a,1, Po-Cheng Chen a,∗,1, Jyh-Biau Chang b, Ce-Kuen Shieh a

a Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Taiwan
b Department of Digital Applications, Leader University, Taiwan

a r t i c l e i n f o

Article history:
Received 10 May 2010
Received in revised form
24 August 2010
Accepted 1 September 2010
Available online 22 September 2010

Keywords:
MapReduce
Grid computing
Load balance
Scheduling

a b s t r a c t

This paper presents a grid-enabled MapReduce framework called ‘‘Ussop’’. Ussop provides its users with
a set of C-language based MapReduce APIs and an efficient runtime system for exploiting the computing
resources available on public-resource grids. Considering the volatility nature of the grid environment,
Ussop introduces two novel task scheduling algorithms, namely, Variable-Sized Map Scheduling (VSMS)
and Locality-Aware Reduce Scheduling (LARS). VSMS dynamically adjusts the size of map tasks according
to the computing power of grid nodes. Moreover, LARS minimizes the data transfer cost of exchanging
the intermediate data over a wide-area network. The experimental results indicate that both VSMS and
LARS achieved superior performance than the conventional scheduling algorithms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

MapReduce [1], popularized by Google, is an emerging pro-
gramming model for large-scale data-parallel applications such
as web indexing, data mining, and scientific simulation [2].
Recently, there has been a dramatic proliferation of research
concerned with various MapReduce framework design and im-
plementation. For example, Apache Hadoop [3] is an open source
implementation of MapReduce sponsored by Yahoo! It is used
at Facebook, Amazon, and many others [2]. Besides, Phoenix [4]
implemented the MapReduce model for the shared memory ar-
chitecture, i.e. multi-core and multi-processor systems. Moreover,
Mars [5] implemented MapReduce on the graphic processors and
Rafique et al. implemented MapReduce for the Cell B.E. archi-
tecture [6]. While substantial studies have been performed on
providing MapReduce frameworks for dedicated data center en-
vironment [1,3,6], virtual machine clusters [7,8] or even inside a
single machine [4,5], relatively little literature has been published
on leveraging MapReduce model on public-resource grids [9–11].

On the industry front, companies such as Google and its com-
petitors may have adequate budgets for constructing large-scale

∗ Corresponding address: Institute of Computer and Communication Engineer-
ing, Department of Electrical Engineering, National Cheng Kung University, No. 1,
Ta-Hsueh Rd., Tainan City 701, Taiwan. Tel.: +886 6 2757575x62400 1779; fax: +886
6 234 5486.

E-mail addresses: kid@hpds.ee.ncku.edu.tw, chen.pocheng@gmail.com
(P.-C. Chen).
1 These authors contributed equally to this project and should be considered as

co-first authors.

data centers to provide sufficient computing and storage resource.
On the other hand, non-profit organizations could not afford to
build their own large-scale data centers without any financial sup-
port. Fortunately, public-resource grids, which federate donated
computational power and storage to run as a cooperative sys-
tem for harvesting the idle CPU cycles and unexploited disk space,
may be a feasible platform for running MapReduce applications of
non-profit computing projects. However, running the MapReduce
model in the grid environment differs markedly from running it in
the data center environment in at least two aspects.

Firstly, the grid environment has the volatility feature. Un-
like data centers, which commonly consist of homogeneous and
dedicated nodes, public-resource grids usually consist of het-
erogeneous and non-dedicated nodes. Grid nodes are probably
supercomputers, single or multi-processor/multi-core PCs; the
computing capability of each of them is normally different from
others. Moreover, each grid node is shared between its owner and
multiple grid users; and thus when a MapReduce application is
run on a grid, the owner’s and other grid users’ job compete con-
currently against the MapReduce application for the grid node re-
sources. Such circumstances make a difficulty of the MapReduce
job scheduling. According to the MapReduce programming model,
all map tasks have to be finished before reduce tasks get started;
Still most of conventional map task scheduling algorithms [1,3] as-
sign equal-sized map tasks to each of map workers. Apparently, a
map task of the MapReduce application running on the grid node
with the poorest capability, i.e. straggler [1,7], will introduce a bot-
tleneck effect degrading the performance of the entire MapReduce
application. Therefore, a requirement exists for a grid-aware map
task scheduling algorithm capable of dynamically balancing the
workload distribution between volatile grid nodes.

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.09.001

http://dx.doi.org/10.1016/j.future.2010.09.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:kid@hpds.ee.ncku.edu.tw
mailto:chen.pocheng@gmail.com
http://dx.doi.org/10.1016/j.future.2010.09.001


844 Y.-L. Su et al. / Future Generation Computer Systems 27 (2011) 843–849

Secondly, the nodes in a data center are connected to each
other over a local-area network (LAN), while the nodes in a public-
resource grid are often distributed over a wide-area network
(WAN). When a reduce worker requests associated intermediate
key/value pairs produced by map workers, the cost of inter-
site communication in the grid environment is obviously higher
than the cost of intra-site communication in the data center
environment. In this situation, the unsteadily available bandwidth
of a WAN causes another difficulty of the MapReduce job
scheduling. However, most of available reduce task scheduling
algorithms [1,3,6,7] assumes that all data transfers are intra-site
communication. To address this problem, it is desirable to develop
a grid-aware reduce task scheduling algorithm to minimize inter-
site communication over a WAN.

According to the above discussions, this paper presents a grid-
enabled MapReduce framework called ‘‘Ussop’’. Ussop provides
its users with a set of C-language based MapReduce APIs and
an efficient runtime system for exploiting the dynamic and non-
dedicated resources available on public-resource grids. Ussop
hides the complexity of job parallelization, task distribution, and
data partition from the users. It uses the variable-sized map
scheduling (VSMS) algorithm during the map phase. VSMS algo-
rithm achieves load balance by dynamically adjusting the size of
a map task and assigning larger-sized map tasks to the grid nodes
with higher capability. Moreover, it uses the locality-aware reduce
scheduling (LARS) algorithm during the reduce phase. LARS min-
imizes the cost of data transfer by assigning a reduce task to an
appropriate grid node in accordance with the data locality infor-
mation. Thus, Ussop can alleviate the straggler problem caused by
various availabilities of grid nodes, and enhance the performance
of a MapReduce job.

The remainder of this paper is organized as follows: Section 2
briefly reviews themajorMapReduce frameworks presented in the
literature. Section 3 discusses the design and implementation of
Ussop, while Section 4 evaluates its performance under exhaustive
experiments. Finally, Section 5 presents some concluding remarks
and indicates the intended direction of future research.

2. Related work

Several notableMapReduce frameworks have been proposed in
the literature [6–8,11]. They are briefly compared with Ussop in
this section.

Cloudlet [8] implemented MapReduce on virtual machine clus-
ters to gain the benefits of the virtualization technique such as
better performance in management and security issues. However,
running a MapReduce application on such environment suffers
from poor performance due to the heavy overhead of I/O virtu-
alization. Specifically, virtual machines hosted by the same phys-
ical node have to compete for the limited network bandwidth
against each other. To address this problem, Cloudlet divided the
reduce phase of original MapReduce programming model into the
local and the global reduce phases. The local reduce phase exe-
cutes the sort and reduce functions within the same physical node,
thereby minimizing the network bandwidth competition. On the
other hand, the reduce workers running in a grid are distributed
over more diverse network environment than that in a virtual ma-
chine cluster, consequently Ussop adopts the LARS algorithms to
minimize inter-site communication over a WAN.

The conventional speculative execution mechanisms [1,3] only
consider running a MapReduce application in a data center envi-
ronment, which consists of homogeneous nodes. Such algorithms
may misjudge any node with poorer resource availability as a
straggler. Accordingly, Zaharia et al. has clearly indicated that
the speculative execution strategy of Hadoop may be not robust

enough for the environment more volatile than a data center envi-
ronment [7]. To enhance the original speculative execution strat-
egy, they proposed the Longest-Approximate-Time-to-End (LATE)
algorithm. The LATE algorithm defines both a cap on the number
of speculative tasks and a slow task threshold to prevent unnec-
essary speculative executions. In contrast, Ussop adopts the VSMS
algorithms to reduce the adverse performance impact due to the
straggler problem by dynamically balancing the workload distri-
bution between volatile grid nodes.

MapReduce.Net [11] is somewhat similar to Ussop. It imple-
mented a MapReduce framework based on Aneka [12]. It re-
lies on Aneka to harvest the idle resource in an enterprise grid
environment, and uses these resources to execute MapReduce
applications. Due to the volatility feature of grid nodes, both
MapReduce.Net and Ussop dynamically assign reduce tasks to ap-
propriate nodes by using a locality-aware scheduling algorithm
rather than a static scheduling algorithm to assign tasks. However,
the task size in MapReduce.Net is equal-sized and the task size in
Ussop is variable in accord with the computing power of workers.

Moreover, in the literature [6], the dynamic work unit scaling
(DWUS) algorithm is also similar to the VSMS algorithm of Ussop.
This literature [6] was targeted for supporting MapReduce on
a cluster consisting of well-provisioned blades and computing
accelerators with limited memory and I/O capacity. Therefore,
when an application starts, a binary search method was used by
DWUS for achieving the highest service rate. The binary search
method is only executed in a period of time. Then, the final
workload size determined is used for the rest of the application
execution. However, the task size in Ussop is dynamic because of
the volatility nature of the grid environment.

3. Ussop: system design and implementation

Many MapReduce frameworks have been designed for various
platforms; however, Ussop is designed for a public-resource grid
environment. Fig. 1 illustrates the general system overview of
Ussop. Once a MapReduce application is submitted to the Ussop
portal, the Ussop portal chooses several grid nodes to run the
application. One of these gird nodes is chosen to be the master of
the application and the rest are chosen to be workers. Each idle
worker then requests a map or a reduce task from the master.

When a worker is assigned a map task, firstly it has to read the
corresponding input data. ExistingMapReduce frameworks such as
Google’s implementation andHadoop runMapReduce applications
inside a dedicated data center. They assume that the replicas of the
input data have been distributed across nodes in the data center in
advanced. On the contrary, the grid nodes exploited by Ussop are
chosen on demand; thus the input data cannot be stored in these
grid nodes in advance. Consequently, the map worker has to read
the input data from the user’s node that submits the MapReduce
job or from the remote replica servers.

The grid nodes exploited by Ussop are usually from several
geographically distributed sites. Moreover, they are normally het-
erogeneous and non-dedicated. Obviously, the homogeneity as-
sumptions of conventional designs do not hold in Ussop anymore.
Thus, Ussop introduces new scheduling algorithms, i.e. VSMS for
the map tasks assignment and LARS for the reduce tasks assign-
ment. The remainder of this section describes the concept of VSMS
and LARS and the implementation of Ussop in detail.

3.1. Variable-sized map scheduling (VSMS)

Conventional MapReduce frameworks assume that workers
can perform tasks at the same rate. Thus, the master of such
frameworks assigns equal-sized map tasks to the idle workers.
Moreover, such frameworks also assume that any detectably



Download English Version:

https://daneshyari.com/en/article/426202

Download Persian Version:

https://daneshyari.com/article/426202

Daneshyari.com

https://daneshyari.com/en/article/426202
https://daneshyari.com/article/426202
https://daneshyari.com

