
Future Generation Computer Systems 27 (2011) 860–870

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Online scheduling of workflow applications in grid environments
Chih-Chiang Hsu a, Kuo-Chan Huang b,∗, Feng-Jian Wang a

a Department of Computer Science, National Chiao-Tung University, No. 1001, Ta-Hsueh Road, Hsinchu, Taiwan
b Department of Computer and Information Science, National Taichung University, No. 140, Min-Shen Road, Taichung, Taiwan

a r t i c l e i n f o

Article history:
Received 31 May 2010
Received in revised form
10 October 2010
Accepted 25 October 2010
Available online 18 November 2010

Keywords:
Workflow
Grid
Mixed-parallel
Online scheduling

a b s t r a c t

Scheduling workflow applications in grid environments is a great challenge, because it is an NP-
complete problem. Many heuristic methods have been presented in the literature and most of them
deal with a single workflow application at a time. In recent years, several heuristic methods have been
proposed to deal with concurrent workflows or online workflows, but they do not work with workflows
composed of data-parallel tasks. In this paper, we present an online scheduling approach for multiple
mixed-parallel workflows in grid environments. The proposed approach was evaluated with a series of
simulation experiments and the results show that the proposed approach delivers good performance and
outperforms other methods under various workloads.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Grid environments are an important platform for running high-
performance and distributed applications. Many large-scale scien-
tific applications are usually constructed as workflows [1–3] due
to large amounts of interrelated computation and communication,
e.g., Montage [4] and EMAN [5]. A grid environment is composed
of widespread resources from different administrative domains.
Miguel et al. [6] indicates that a grid environment usually has the
characteristics: heterogeneity, large scale and geographical distri-
bution. Task scheduling in a grid is a NP-complete problem [7,8],
therefore many heuristic methods have been proposed. The work-
flow scheduling problem in grid environments is a great challenge.
In the past years, there have been many static heuristic methods
proposed [9–17]. They are designed to schedule only one single
workflow at a time.

In this paper, we present a new approach called Online Work-
flow Management (OWM) for scheduling multiple online mixed-
parallel workflows. There are four processes inOWM: Critical Path
Workflow Scheduling (CPWS), Task Scheduling, Multi-Processor
Task Rearrangement and Adaptive Allocation (AA). CPWS process
submits tasks into the waiting queue. Task scheduling and AA
processes prioritize the tasks in the queue and assign the task
with the highest priority to processors for respective execution. In

∗ Corresponding author. Tel.: +886 4 22183813; fax: +886 4 22183580.
E-mail addresses: chanurnk@gmail.com (C.-C. Hsu),

kchuang@mail.ntcu.edu.tw, kchuangvava@gmail.com (K.-C. Huang),
fjwang@cs.nctu.edu.tw (F.-J. Wang).

data-parallel task scheduling, there may be some scheduling holes
which are formed when the free processors are not enough for the
first task in the queue. The multi-processor task rearrangement
process works for dealing with scheduling holes to improve uti-
lization.Many approaches can be adopted in this process, including
first fit, easy backfilling [18], and conservative backfilling [18].

To evaluate the proposed OWM, we developed a simulator
using discrete-event based techniques for experiments. A task-
waiting queue and an event queue keep the tasks and events for
processing. The grid environment is assumed to consist of several
dispersed clusters, each containing a specific amount of processors.
A workflow is represented by direct acyclic graph (DAG). A series
of simulation experiments were conducted and the results show
that OWM has better performance than RANK_HYBD [19] and
Fairness_Dynamic based on the Fairness (F2) [20] in handling
online workflows. For workflows composed of data-parallel tasks,
the experimental results show that OWM(FCFS) performs almost
equally to OWM(conservative), and outperforms OWM(easy) and
OWM(first fit).

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the OWM approach.
Section 4 presents the experiments and discusses the results.
Section 5 concludes the paper.

2. Related work

In the past years, most works dealing with workflow schedul-
ing [9–17,21] were restricted to a single workflow application.
Recently, some works [19,20,22–24] began to discuss the issue of
multipleworkflow scheduling. Zhao et al. [20] envisaged a scenario

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.10.015

http://dx.doi.org/10.1016/j.future.2010.10.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:chanurnk@gmail.com
mailto:kchuang@mail.ntcu.edu.tw
mailto:kchuangvava@gmail.com
mailto:fjwang@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.future.2010.10.015


C.-C. Hsu et al. / Future Generation Computer Systems 27 (2011) 860–870 861

that need to schedule multiple workflow applications at the same
time. They proposed two approaches: composition approach and
fairness approach.

(1) The composition approach merges multiple workflows into a
single workflow first. Then, list scheduling heuristic methods,
such as HEFT [13] and HHS [17], can be used to schedule the
merged workflow.

(2) The main idea of the fairness approach is that when a task
completes, it will re-calculate the slowdown value of each
workflow against other workflows and make a decision as to
which workflow should be considered next.

The composition and the fairness approaches are static algo-
rithms and not feasible to deal with online workflow applications,
i.e. multiple workflows come at different times. RANK_HYBD [19]
is designed to deal with online workflow applications submitted
by different users at different times. The task scheduling approach
of RANK_HYBD sorts the tasks inwaiting queue using the following
rules repeatedly.

(1) If tasks in waiting queue come from multiple workflows, the
tasks are sorted in ascending order of their rank value (ranku)
where ranku is described in HEFT [13];

(2) If all tasks belong to the sameworkflow, the tasks are sorted in
descending order of their rank value (ranku).

However, the number of processors to be used by each task
is limited to a single processor. It is not feasible to deal with
workflows composed of data-parallel tasks. T. N’takpe’ et al.
proposed a scheduling approach for mixed parallel applications on
heterogeneous platforms [25]. Mixed parallelism is a combination
of task parallelism and data parallelismwhere the former indicates
that an application has more than one task that can execute
concurrently and the latter means a task can run using more than
one resource simultaneously.

The scheduling approach in [25] is only suitable for a sin-
gle workflow. T. N’takpe’ et al. further developed an approach to
deal with concurrent mixed parallel applications [26]. Concurrent
scheduling formixed parallel applications contains two steps: con-
strained resource allocation and concurrent mapping. The former
aims at finding an optimal allocation for each task. The number of
processors is determined in this step. The latter prioritizes tasks of
workflows. However, the approach in [26] is restricted to concur-
rent workflows submitted at the same time. It is infeasible to deal
with onlineworkflows submitted at different times. TheOWMpro-
posed in this paper is designed to deal withmultiple onlinemixed-
parallel workflows that previous methods cannot handle well.

3. Online workflow management in grid environments

This section presents the Online Workflow Management
(OWM)approachproposed in this paper formultiple onlinemixed-
parallel workflow applications. Fig. 1 shows the structure of
OWM . In OWM , there are four processes: Critical Path Workflow
Scheduling (CPWS), Task Scheduling, multi-processor task rear-
rangement and Adaptive Allocation (AA), and three data struc-
tures: online workflows, a grid environment and a waiting queue.
The processes are represented by solid boxes, and the data struc-
tures are represented by dotted boxes.

When workflows come into the system or tasks complete suc-
cessfully, CPWS , takes the critical path in workflows into account,
and submits the tasks of online workflows into the waiting queue.
The task scheduling process in OWM adopts the RANK_HYBD
method in [19]. In RANK_HYBD, the task execution order is sorted
based on the length of tasks’ critical path. If all tasks in the wait-
ing queue belong to the same workflow, they are sorted in the
descending order. Otherwise, the tasks in different workflows are

A1

A2 A3

B1

B2 B3 B4

B5A4 A5

Fig. 1. Online workflow management (OWM).

sorted in the ascending order. In parallel task scheduling, there
may be some scheduling holes which are formed when the free
processors are not enough for the first task in the queue. Themulti-
processor task rearrangement process inOWM works forminimiz-
ing holes to improve utilization Several techniques might be used
in the process including first fit, easy backfilling [18], and conser-
vative backfilling [18] approaches. When there are free processors
in the grid environment, AA takes the first task (the highest prior-
ity task) in the waiting queue, and selects the required processors
to execute the task.

A task in a workflow has four states: finished, submitted, ready
and unready. A finished task means the task has completed its
execution successfully. A submitted task means the task is in the
waiting queue. A task is readywhen all necessary predecessor(s) of
the task have finished, otherwise, the task is unready. Workflow
scheduling in RANK_HYBD [19] is straightforward. It simply
submits the ready tasks into the waiting queue and we call it
SimpleWorkflow Scheduling (SWS) hereafter in this paper. On the
other hand, in our OWM, when a new workflow arrives, CPWS is
adopted to calculate ranku of each task in the workflow and sort
the tasks in descending order of ranku into a list. The list is named
the critical path list. Here, ranku is the upward rank of a task [13]
which measures the length of critical path from a task ti to the exit
task. The definition of ranku is as below

ranku(ti) = wi + max
tj∈succ(ti)

(ci,j + ranku(tj))

where succ(ti) is the set of immediate successors of task ti, ci,j is
the average communication cost of edge (i, j), andwi is the average
computation cost of task ti. The computation of a rank starts from
the exit task and traverses up along the task graph recursively.
Thus, the rank is called upward rank, and the upward rank of the
exit task texit is

ranku(texit) = wexit .



Download English Version:

https://daneshyari.com/en/article/426204

Download Persian Version:

https://daneshyari.com/article/426204

Daneshyari.com

https://daneshyari.com/en/article/426204
https://daneshyari.com/article/426204
https://daneshyari.com

