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Logical relations are a fundamental and powerful tool for reasoning about programs in

languages with parametric polymorphism. Logical relations suitable for reasoning about

observational behavior in polymorphic calculi supporting various programming language

features have been introduced in recent years. Unfortunately, the calculi studied are typi-

cally idealized, and the results obtained for them offer only partial insight into the impact

of such features on observational behavior in implemented languages. In this paper, we

show how to bring reasoning via logical relations closer to bear on real languages by

deriving results that are more pertinent to an intermediate language for the (mostly)

lazy functional language Haskell like GHC Core. To provide a more fine-grained analysis

of program behavior than is possible by reasoning about program equivalence alone, we

work with an abstract notion of relating observational behavior of computations which

has among its specializations both observational equivalence and observational approxi-

mation. We take selective strictness into account, and we consider the impact of different

kinds of computational failure, e.g., divergence versus failed pattern matching, because

such distinctions are significant in practice. Once distinguished, the relative definedness

of different failure causes needs to be considered, because different orders here induce

different observational relations on programs (including the choice between equivalence

and approximation). Ourmain contribution is the construction of an entire family of logical

relations, parameterized over a definedness order on failure causes, eachmember of which

characterizes the corresponding observational relation. Although we deal with properties

very much tied to types, we base our results on a type-erasing semantics since this is more

faithful to actual implementations.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Typeful programming as identified by Cardelli [1] is currently one of the key approaches to producing safe and reusable

code. Types serve as documentation of functionality (even as partial specifications) and can help to rule out whole classes

of errors before a program is ever run. Typeful programming is particularly effective for pure functional languages such as

Haskell [2],where it comeswithpowerful reasoning techniques connecting the types of functions to their possible observable

behaviors. One such technique is the use of logical relations to reason about polymorphic programs.
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Polymorphism is essential for reconciling strong static typing, which attempts to prevent the use of code in unfit contexts

by assigning types that are as precise and descriptive as possible, with the goal of flexible reuse. Of the two kinds of polymor-

phism identified by Strachey [3] — namely, parametric polymorphism and ad-hoc polymorphism — we are interested in the

former here; see the survey [4] for a refined taxonomy. Parametric polymorphism expresses the requirement that a certain

functionality is offered for arbitrary types in a uniformmanner. Intuitively, this means that the same algorithm is employed

in instantiations of a polymorphically typed function at different concrete types. This intuitive uniformity conditionwas first

formally captured by Reynolds [5] through the introduction of the notion of relational parametricity, which in turn rests on

the concept of logical relations [6,7].

The fundamental idea underlying logical relations is to interpret types as relations (rather than as sets, possibly with

additional structure). These relational interpretations are built by induction, starting from specific relations for a language’s

base types (if any), and obtaining interpretations for compound types by propagating relations along the type structure in

an “extensional” manner. The key result to be proved for every logical relation constructed in this way is that every function

expressible in theunderlying language is related to itself by the relational interpretationof its type. Thisparametricity theorem,

or certain generalizations of it, can then be used, for example, to derive useful algebraic laws (so-called “free theorems”)

about polymorphic functions solely from their types [8], or to establish the semantic correctness of efficiency-improving

program transformations [9–13]. But for all such applications, the usefulness in practice depends on a good fit between the

semantics of the functional language of interest and that of the typically reduced formal calculus for which parametricity

results are proved.

Indeed, the applicability to real programming languages of parametricity results obtained for idealized calculi cannot be

taken for granted. Simply assuming such applicability is actually quite dangerous, as can be seen from experience with the

selective strictness feature of Haskell, a language which is otherwise nonstrict. Denotationally specified via the polymorphic

primitive

seq :: ∀α β. α → β → β

seq ⊥ b = ⊥
seq a b = b if a /= ⊥

in the language definition [2], and routinely used by programmers to control the time and space behavior of their programs,

selective strictness was determined early on to have detrimental effects on parametricity. Nevertheless, reasoning about

Haskell programs typically took place as if this were not an issue. In fact, Haskell programs were automatically optimized

by a compiler using parametricity-based program transformations whose correctness in the presence of selective strictness

was a conjecture at best. In the worst case, this means that the compiler can “optimize” a perfectly functioning program

into one that fails to terminate or terminates with a runtime error. Conditions under which this can be avoided were first

established in [14,15]. These conditions were derived from a new logical relation for which the parametricity theorem holds

even with respect to (a naive, but standardly accepted denotational model of) a sublanguage of Haskell which includes

selective strictness. Amore thorough account in terms of a polymorphic lambda calculus similar to that used as intermediate

language in the Glasgow Haskell Compiler (GHC) was recently given in [16]. With the current paper we further advance a

line of research whose ultimate goal is the development of appropriate tools for reasoning about parametricity properties

of real programming languages rather than toy calculi.

The first new aspect we consider is that of distinguishing different causes of program failure. The notion of “undefined

value” is, in some form, fundamental to any semantic treatment of bothfixpoint recursion (which is actually thefirst challenge

when extending relational parametricity from Reynolds’ original setting to more realistic languages; it is met by Wadler [8]

and Pitts [17]) and selective strictness. For example, the notion of “undefined value” is captured by the notation ⊥ in the

above specification for seq, where it stands for a nonterminating computation or a runtime error, such as might be obtained

as the result of a failed pattern match. Indeed, it is quite common to conflate these different failure causes into a single

denotation or observation, but in practice this is not satisfactory. For example, conflating different failure causes means that

a program transformation that is claimed to be semantics-preserving may very well transform a nonterminating program

into one that instead terminates with a runtime error, and vice versa, or may confuse different kinds of runtime errors. If

this happens automatically in a compiler, a debugging nightmare ensues. And this issue is very real. In particular, Haskell

examples similar to the ones in [14,15] can be given for which the classical foldr/build-fusion rule of Gill et al. [9] exhibits this

behavior of transforming one kind of error into another one. So it is completely unclear whether the preconditions (on the

arguments to foldr) found in earlier work to guarantee total correctness of foldr/build-fusion in the presence of seq still do so

when considering different failure causes as semantically different. And even partial correctness of foldr/build-fusion, in the

sense that the program after transformation at least semantically approximates the original one, is no longer guaranteed.

While in [14–16] it was established to hold unconditionally, the aforementioned examples show that foldr/build-fusion may

transformarbitrary different failures into each other in either direction. So, nomatter howdifferent failure causes are ordered

by our notion of semantic approximation, some instance of foldr/build-fusion will violate that order, and thus not even be

partially correct.

Actually, this last observation raises an important question. Assumingwe consider different failure causes as semantically

different, should there at least be some semantic approximation order between them? For example, one might have the

intuition that nonterminating programs are strictly less defined than programs that terminate with a runtime error, and
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