
Future Generation Computer Systems 26 (2010) 198–206

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An integrated security-aware job scheduling strategy for large-scale
computational grids
Chao-Chin Wu ∗, Ren-Yi Sun
Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua City 500, Taiwan

a r t i c l e i n f o

Article history:
Received 5 December 2008
Received in revised form
1 August 2009
Accepted 3 August 2009
Available online 6 August 2009

Keywords:
Job scheduling
Computational grid
Fault tolerance
Genetic algorithm
Security

a b s t r a c t

All existing fault-tolerance job scheduling algorithms for computational grids were proposed under the
assumption that all sites apply the same fault-tolerance strategy. They all ignored that each grid site
may have its own fault-tolerance strategy because each site is itself an autonomous domain. In fact, it
is very common that there are multiple fault-tolerance strategies adopted at the same time in a large-
scale computational grid. Various fault-tolerance strategies may have different hardware and software
requirements. For instance, if a grid site employs the job checkpointing mechanism, each computation
node must have the following ability. Periodically, the computational node transmits the transient state
of the job execution to the server. If a job fails, it will migrate to another computational node and
resume from the last stored checkpoint. Therefore, in this paper we propose a genetic algorithm for
job scheduling to address the heterogeneity of fault-tolerance mechanisms problem in a computational
grid. We assume that the system supports four kinds fault-tolerancemechanisms, including the job retry,
the job migration without checkpointing, the job migration with checkpointing, and the job replication
mechanisms. Because each fault-tolerance mechanism has different requirements for gene encoding,
we also propose a new chromosome encoding approach to integrate the four kinds of mechanisms in a
chromosome. The risk nature of the grid environment is also taken into account in the algorithm. The risk
relationship between jobs and nodes are defined by the security demand and the trust level. Simulation
results show that our algorithm has shorter makespan and more excellent efficiencies on improving the
job failure rate than the Min–Min and sufferage algorithms.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A computational grid is a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities [1–3]. It enables
the dynamic sharing, selection, and aggregation of geographically
distributed autonomous and heterogeneous resources at runtime
depending on their availability, capability, performance, cost and
the users’ quality-of-service requirements [4–7]. However, a large-
scale grid system is inherently unreliable by nature. The jobs are
subject to system failures or delays caused by infected hardware,
software vulnerability, network failure, overloaded resource
conditions, non-availability of required software components, and
distrusted security policy. To address these problems, a variety of
fault-tolerance mechanisms and supports have been proposed for
Grid systems. For instance, Globus [8] provides a heartbeat service
to detect if any faults have occurred in running processes. When
being notified of a failure, the application can take the appropriate

∗ Corresponding author. Tel.: +886 4 7232105; fax: +886 4 7211284.
E-mail address: ccwu@cc.ncue.edu.tw (C.-C. Wu).

recovery action.Moreover, the re-executionmechanism is adopted
in Netsolve/Gridsolve [9] and Condor-G [10] systems while the
replicationmechanism in theMentat system [11] is used for failure
recovery.
Despite the fact that many heuristics have been suggested

for large-scale job scheduling [12–18], as pointed out by Song
et al. [19], they are not applicable in a risky environment. There-
fore, Song et al. developed security assurance and risk-resilient
strategies and proposed eight job scheduling algorithms for use
under various risky conditions to address these problems. Their
work [19,20] is built upon related works on Grid security, trust
management and job scheduling. Their proposed security-assured
job scheduling strategies consider the risk relationship between
jobs and nodes using the security demand (SD) and the trust level
(TL). The SD quantifies how much a user’s job requires the assur-
ance of secure computing services by a grid site or a cluster node.
The TL quantifies how much a user can trust a site for successfully
executing a given job. A job is expected to be successfully carried
out when SD and TL satisfy a security assurance condition (SD ≤
TL) during the job mapping process. Furthermore, they also pro-
posed a space-time genetic algorithm (STGA) based on the messy
encoding concept with a space-time guided search mechanism.

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.08.004

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ccwu@cc.ncue.edu.tw
http://dx.doi.org/10.1016/j.future.2009.08.004


C.-C. Wu, R.-Y. Sun / Future Generation Computer Systems 26 (2010) 198–206 199

Because its search is history-sensitive, STGA convergesmuch faster
than a traditional GA.
Although Song et al. proposed eight job scheduling algorithms

for use under various risky conditions [19], all of these algorithms
ignore the heterogeneity of fault-tolerancemechanisms supported
in grid systems, where the scheduler assumes that all compu-
tational nodes adopt the same fault-tolerance strategy. In fact,
different computational nodes are usually protected by different
fault-tolerance mechanisms because distributed computational
nodes are managed by different autonomous domains in a realistic
large-scale computational grid. For instance, one grid site adopts
the checkpointing mechanism to protect its computational nodes,
one adopts the replication mechanism, and one adopts both the
checkpointing and replication mechanisms. Furthermore, various
fault-tolerance mechanisms may require different hardware and
software supports. For instance, the job migration operation with
the checkpointingmechanismmust periodically transmit the tran-
sient process state to the server. When a failure occurs, the server
will transmit the last stored process state to the newly assigned
computational node for resuming the execution of the failed job.
In such a grid environment, all the job scheduling algorithms pro-
posed by Song et al. are not applicable. Therefore, in this paper we
propose a security-assured grid job scheduling strategy consider-
ing the heterogeneity of fault-tolerance mechanism support.
We propose a genetic algorithm (GA) for job scheduling. In this

algorithm, we consider four kinds of fault-tolerance mechanisms,
including the job retry, the job migration without checkpointing,
the jobmigrationwith checkpointing and the job replicationmech-
anisms. Because each fault-tolerance mechanism has different re-
quirements for gene encoding, we propose a new chromosome
encoding approach to integrate the four kinds of mechanisms in
a chromosome. Simulation results show that our algorithm has
shorter makespan and more excellent efficiencies on improving
the job failure rate than the Min–Min algorithm.
The rest of this paper is organized as follows. Section 2 intro-

duces the related work. Section 3 presents the system model and
the proposed job scheduling algorithm considering the hetero-
geneity of fault-tolerance strategies. Section 4 demonstrates the
experimental results. Finally, Section 5 concludes the paper.

2. Related Work

A variety of job scheduling strategies have been proposed
for computational grids. Xiao et al. proposed an incentive-based
scheduling scheme that investigates how to maximize the success
rate of job execution and minimize the fairness deviation among
resources by allowing resource providers and resource consumers
to make autonomous scheduling decisions [21]. Doulamis et al.
proposed a fair scheduling algorithm that will fairly reduce the
CPU rates assigned to the tasks when the resources are insufficient
so that the share of resources that each user gets is proportional
to the user’s weight [22]. Viswanathan et al. proposed a resource-
aware dynamic incremental scheduling that handles large volumes
of computationally intensive, arbitrarily divisible loads submitted
for processing at cluster or grid systems [23]. Lee and Zomaya
proposed two algorithms for bag-of-tasks applications, one for
data-intensive tasks and one for computation-intensive tasks,
which adopt task duplication for scheduling without requiring
accurate performance prediction information [24]. Baghban et al.
proposed a job scheduling algorithm that will selects the
resources based on input jobs, communication links and resource
computational capability [25]. Bertin et al. proposed a fully decen-
tralized algorithm that can achieves both optimal path selection
and flow control only requiring local information at each slave
computing task and at each buffer in the network links [26].
Yu and Chen proposed a genetic algorithm that takes different

computing capabilities of computing nodes and dynamic network
status into consideration [27]. Nobrega et al. proposed scheduling
heuristics that investigate the tradeoff between two factors: the
challenging requirement of complete and accurate information
about the applications and the grid environment, and the extra
consumption of resources incurred by task replication [28]. Li
et al. proposed a predictable and grouped genetic algorithmwhere
a job workload estimation algorithm is designed to evaluate a
job workload based on its historical execution records and the
divisible load theory is employed to predict an optimal fitness
value by which the convergence process can be shortened in
searching for a large scheduling space [29]. Chang et al. proposed
an ant-based algorithm that aims at balancing the entire system
load while trying to minimize the makespan of a given set of
jobs [30]. In addition, Chang et al. also proposed a job scheduling
algorithm that dispatches a job to the site where the needed data
are present to reduce data access time and the amount of inter-
cluster-communications [31]. Gao et al. developed two algorithms
that use their proposed models for predicting completion time
to schedule jobs at both system level and application level [32].
Kosar and Balman introduced an interesting data-aware batch
scheduler for data-intensive computing [33]. Their scheduler is
called Stork that is especially designed to understand the semantics
and characteristics of data placement tasks, which can include
data transfer, storage allocation and de-allocation, data removal,
metadata registration and un-registration, and replica location.
Palmieri discussed the job scheduling policy when network
resources in a Grid system can be reserved [34]. He argued that
reservation of connectivity resources is needed for data-intensive
applications to facilitate the transportation of enormous data-sets
between Grid nodes in predictable times. The network can be
the point-to-point dedicated Wavelength Division Multiplexing
(WDM)-based optical transport infrastructure.
Some scheduling strategies especially emphasized the impor-

tance of security awareness. Azzedin and Maheswaran [35] pro-
posed a trust model that incorporates the security implications
into scheduling algorithms. Humphrey and Thompson [36] pro-
posed usage models for security-aware Grid computing but they
did not elaborate onhow todesign a scheduler by incorporating the
security concerns into collaborative computing over distributed
cluster environment. Abawajy [37] and Litke [38] suggested repli-
cating jobs at multiple sites to guarantee successful job executions
in a Grid environment.
Song et al. [20,19] thought that a job distributed to a remote

node may suffer from some infections or malicious attacks.
Therefore, a job schedulermust consider the riskwhen dispatching
jobs to remote nodes [20,19]. They proposed a job failure model
to represent the risk level in job scheduling. There were two
parameters in this model: the security demand (SD) and trust level
(TL). SD represents a job’s security requirement level, higher SD
value represents this job has higher security requirement, so the
job needs a more reliable node for job execution. TL represents
a node’s secure level, higher TL value represents this node can
provide a more reliable environment. So different jobs assigned to
different nodes would have different risk levels. Based on the job
failure model, they proposed three schedule strategies based on
different risk levels: (1) Secure mode—jobs were only scheduled
to those nodes which can ensure security. (2) Risky mode—jobs
were scheduled to any available nodes without considering the
risks between jobs and nodes, so it took all possible risks. (3) F-
riskymode—jobswere scheduled to available nodes to take atmost
f risk, where f was a probability.
Moreover, in [19], Song et al. proposed four types of scheduling

strategies: (1) Risky mode—jobs were scheduled to any available
nodes without considering risks between jobs and nodes, so it
took all possible risks. (2) Preemptive mode—failed jobs would be



Download English Version:

https://daneshyari.com/en/article/426244

Download Persian Version:

https://daneshyari.com/article/426244

Daneshyari.com

https://daneshyari.com/en/article/426244
https://daneshyari.com/article/426244
https://daneshyari.com

