Future Generation Computer Systems 26 (2010) 245-256

journal homepage: www.elsevier.com/locate/fgcs oz

Contents lists available at ScienceDirect

Future Generation Computer Systems

R
FiGICIS!

R

Three fundamental dimensions of scientific workflow interoperability: Model of
computation, language, and execution environment

Erik EImroth, Francisco Hernandez *, Johan Tordsson

Department of Computing Science, Umed University, SE-901 87 Umed, Sweden
HPC2N, Umed University, SE-901 87 Umed, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 12 March 2009
Received in revised form

28 July 2009

Accepted 12 August 2009
Available online 21 August 2009

We investigate interoperability aspects of scientific workflow systems and argue that the workflow
execution environment, the model of computation (MoC), and the workflow language form three dimensions
that must be considered depending on the type of interoperability sought: at the activity, sub-workflow,
or workflow levels. With a focus on the problems that affect interoperability, we illustrate how these
issues are tackled by current scientific workflows as well as how similar problems have been addressed

inrelated areas. Our long-term objective is to achieve (logical) interoperability between workflow systems

Keywords:

Scientific workflows
Workflow interoperability
Workflow languages
Model of computation
Grid interoperability

operating under different MoCs, using distinct language features, and sharing activities running on
different execution environments.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

To date, scientific workflow systems offer rich capabilities for
designing, sharing, executing, monitoring, and overall managing
of workflows. The increasing use of these systems correlates with
the simplicity of the workflow paradigm that provides a clear-
cut abstraction for coordinating stand-alone activities. With this
paradigm, scientists are able to concentrate on their research at the
problem domain level without requiring deep knowledge of pro-
gramming languages, operating systems, arcane use of libraries,
or hardware infrastructure. In addition, the ease by which scien-
tists can describe experiments, share descriptions and results with
colleagues, as well as automate the recording of vast amounts of
data, for example, provenance information and other data relevant
for reproducing experiments, have made the workflow paradigm
the fundamental instrument for current and future scientific
collaboration.

Currently, there are many sophisticated environments for
creating and managing scientific workflows that have also started
to incorporate capabilities for using powerful grid resources.
Although similar in many respects, including domains of interest
and offered capabilities, existing workflow systems are not yet

* Corresponding author at: Department of Computing Science, Umea University,
SE-901 87 Umea, Sweden. Tel.: +46 0 90786 99 13.
E-mail addresses: elmroth@cs.umu.se (E. ElImroth), hernandf@cs.umu.se
(F. Hernandez), tordsson@cs.umu.se (J. Tordsson).

0167-739X/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.08.011

interoperable. Rather than discussing if workflow systems are
completely interoperable or not at all, here we argue that the me-
thods and techniques required to make systems interoperable
depend on the type of interoperability sought.

Consequently, our main contribution is the introduction of
three dimensions: workflow execution environment, model of com-
putation (MoC), and workflow language, that classify the problems
that must be addressed depending on whether interoperability
is sought at the activity, sub-workflow, or workflow levels. Our
analysis of the dimensions leverages research from the areas of
theory of computation, compiler optimization, and (visual) pro-
gramming languages. We investigate differences in the execution
environments for local workflows, and those executing on remote
(grid) resources. We also study the implications of selecting an
MoC, including the repercussions of choosing between the control-
driven and data-driven styles of representing workflows, as well
as methods for converting between both representations. Another
contribution is the analysis of language aspects relevant for scien-
tific workflows, including iterations and conditions, as well as the
consequences of having a type system associated to the workflow
language.

The rest of the paper is organized as follows. Section 2 inves-
tigates the reasons why interoperability in workflows is desired.
From this motivation the interoperability problem is sub-divided
into three distinct levels that are better addressed by focusing on
the three proposed dimensions. At the end of this section we ex-
plain and discuss why those three dimensions must be consid-
ered. Section 3 describes the execution environment dimension

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:elmroth@cs.umu.se
mailto:hernandf@cs.umu.se
mailto:tordsson@cs.umu.se
http://dx.doi.org/10.1016/j.future.2009.08.011

246 E. Elmroth et al. / Future Generation Computer Systems 26 (2010) 245-256

with particular focus on differences between local and remote
(grid) environments. The differences in the respective MoCs com-
monly employed for local and grid workflows as well as a study
of control-driven and data-driven workflows are presented in Sec-
tion 4. Section 5 focuses on workflow language related issues in-
cluding language constructs such as conditions and iterations in
light of their programming languages counterparts. Finally, in Sec-
tion 6, we present our conclusions, followed by acknowledgments
and a list of references.

2. Workflow interoperability

There are many scientific workflow systems currently in use;
see, e.g., [1-10]. Several of these have been developed suc-
cessfully within interdisciplinary collaborations between domain
scientists, the end-users, and computer scientists, the workflow en-
gineers. Some of these systems target a particular scientific domain
(e.g., [5]) while others cover a range of fields (e.g., [1-4,6,8,10]).
Furthermore, some of these systems have been designed to opti-
mize the use of grid resources [1,3,6,8,10], while others are more
apt for desktop interfaces and dedicated to single users [2,4,5].

The existence of such a wide range of workflow systems is com-
parable to the large number of programming languages available.
In both cases solutions can be general purpose or tailored for spe-
cific domains, and the choice of one over the other depends not
only on the problem at hand but also on personal preferences.
Moreover, it is neither possible to have one solution suitable for all
problems and preferred by all users, nor likely for a new solution to
emerge and replace all existing ones. Yet, unlike programming lan-
guages in which interoperability is achieved at the binary or byte
code level and calls for source-to-source interoperability have long
faded away, achieving interoperability between workflow systems
is a venture of high priority.

For this work, we consider a workflow to be a direct graph
where the nodes of the graph represent workflow activities and the
links represent interaction between activities. Workflow activities
are the execution units in workflows, and can be either atomic
entities or sub-workflows composed of other activities. Thus, a
workflow can be structured as a hierarchical graph composed
of sub-workflows and activities. Ports serve as a mechanism to
communicate between activities. Input ports provide the input to
an activity whereas output ports store the output generated by the
activity. Output ports are connected to input ports to specify the
direction in which the interaction between activities is carried out.
We can also consider activities to be functions whose domains are
given by the cross product of the input ports and whose ranges are
given by the cross product of the output ports. A workflow engine is
a software module that selects and executes activities, specified by
a workflow description, a process commonly known as enactment.
A workflow language is used to encode the workflow descriptions
that are read by the engine during enactment. In this work we focus
exclusively on interoperability amongst workflow engines.

Table 1 presents a summary of the characteristics of workflow
engines and workflow activities depending on the location where
they execute. A workflow engine can execute in a local machine or
it can do so at a remote resource. The remote case is useful when
processing long-running activities, as client tools can reconnect
to the engine for monitoring and managing purposes without
requiring permanent connections. When executing locally, the
engine is used by a single user and it executes in the user’s desktop
machine, whereas the engine is accessible by many users when
executing remotely. In the latter case, the engine is commonly
exposed as a permanently available service.

Workflow activities can be executed in the machine where the
engine runs, which need not be the user’s desktop machine, or on
remote resources. When activities execute in the same machine as

Table 1
Summary of characteristics of workflow engines and workflow activities depending
on the location in which they run.

Engine Activities
Local User’s desktop machine. Machine where engine runs.
(personal use)
Remote Engine located in server. Accessed via service interfaces

(multiple users) or (grid) middleware.

the engine they are often tightly coupled to the engine, and the
combination is offered as a coherent environment. In this case, ac-
tivities are used by a single user whereas these tend to be re-usable
by many users when deployed at remote resources. Remote ex-
ecution can be achieved either by employing standardized inter-
faces (e.g., using Web services) or by employing grid middleware.!
Thanks to their typed interfaces, Web services enables the use of
remote activities in a manner very similar to the one employed
when activities execute locally. This is not the case for activities
that access grid middleware directly. These activities are stand-
alone command line applications configured by environment vari-
ables or command line arguments and are executed batch style.
Notice that the command line application execution style offered
by grid middleware can also be exposed as a Web service [11]. We
treat workflows accessing services and those coordinating local ac-
tivities equally in most of this work. However, we pay special at-
tention to workflows using grid middleware and we refer to them
as grid workflows.

In the remainder of this section we first present some moti-
vations for workflow interoperability. From these motivations we
identify that interoperability can be sought at the activity, sub-
workflow, or complete workflow level. We finally argue that in-
teroperability, at those three levels, can be better addressed if the
problem is tackled from three orthogonal dimensions.

2.1. A case for interoperability

It has recently been suggested [12] that end-users are not
really pressing for interoperability among workflow systems.
The rationale behind this suggestion is that many contemporary
systems are developed in tight coordination between end-users
and workflow engineers. Hence, instead of using other systems
that already offer the desired functionalities, new features are
added when needed. This rationale leads to duplication of efforts
and misutilizes resources that could otherwise be employed in
more productive endeavors. It is furthermore mainly beneficial for
researchers who are involved in this development loop. Yet, it is
also the case that users may not be interested in full interoperability
between workflow systems.?

Instead, a less ambitious degree of interoperability is often
sought. For example, several workflow systems have been devel-
oped for operation within a specific scientific domain; thus, it is
expected that users from different scientific fields, or in some cases
from different research groups, use different workflow systems.
The magnitude of current scientific problems has provoked the
formation of large interdisciplinary collaborations in which scien-
tists from different fields contribute to a final solution. It is very
difficult to modify systems just to enable these collaborations.
Furthermore, users are more comfortable working in environ-
ments familiar to them, and adapting to a different system may

T practice any middleware of RPC mechanism, but for our purpose we consider
only grid middleware.

2 Full interoperability is commonly defined as the ability for clients (be they hu-
man users or software components) to seamlessly use the full functionality provided
by the different interoperable systems in a totally transparent manner [13].

Download English Version:

https://daneshyari.com/en/article/426249

Download Persian Version:

https://daneshyari.com/article/426249

Daneshyari.com

https://daneshyari.com/en/article/426249
https://daneshyari.com/article/426249
https://daneshyari.com/

