
Future Generation Computer Systems 26 (2010) 259–266

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Parallel OLAP with the Sidera server
Todd Eavis ∗, George Dimitrov, Ivan Dimitrov, David Cueva, Alex Lopez, Ahmad Taleb
Concordia University, Montreal, Canada

a r t i c l e i n f o

Article history:
Received 16 May 2008
Received in revised form
26 September 2008
Accepted 5 October 2008
Available online 25 October 2008

Keywords:
OLAP
Cluster computing
Parallel DBMS

a b s t r a c t

Online Analytical Processing (OLAP) has become a primary component of today’s pervasive Decision
Support systems. As the underlying databases grow into the multi-terabyte range, however, single
CPU OLAP servers are being stretched beyond their limits. In this paper, we present a comprehensive
model for a fully parallelized OLAP server. Our multi-node platform actually consists of a series of
largely independent sibling servers that are ‘‘glued’’ together with a lightweight MPI-based Parallel
Service Interface (PSI). Physically, we target the commodity-oriented, ‘‘shared nothing’’ Linux cluster, an
architecture that provides an extremely cost effective alternative to the ‘‘shared everything’’ commercial
platforms often used in high-end database environments. Experimental results demonstrate both the
viability and robustness of the design.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary data warehouses (DWs) now represent some
of the world’s largest database systems, often stretching into
the multi-terabyte range. Structurally, data warehouses are based
upon a denormalized logical model known as the Star Schema. The
‘‘star’’ consists of a large fact table that houses the organization’s
measurement records, coupled with a series of smaller dimension
tables defining specific business entities (e.g., customer, product,
store). Given the enormous size of the fact tables, however, it can
be extremely expensive to query the raw data directly. Typically,
we augment the basic Star Schema with compact, pre-computed
aggregates (called group-bys or cuboids) that can be queried
much more efficiently at run-time. We refer to this collection
of aggregates as the data cube. Specifically, for a d-dimensional
space, {A1, A2, . . . , Ad}, the cube defines the aggregation of the
2d unique dimension combinations across one or more relevant
measure attributes.
In practice, the generation and manipulation of the data cube

is often performed by a dedicated OLAP server that runs on top
of the underlying relational data warehouse. In other words, it
is the job of the OLAP server (at least in part) to pre-process
the warehouse data. The sheer scale of the DWs, however, has
recently led researchers to explore opportunities for parallelizing
or distributing the OLAP workload across multiple CPUs/disks.
While ‘‘shared everything’’ parallel models are relatively attractive
for small to medium sized warehouses, they tend to have limited

∗ Corresponding author.
E-mail address: eavis@cs.concordia.ca (T. Eavis).

scalability in terms of both the CPU count and the number of
available disk heads.
In this paper, we describe an architecture for a scalable OLAP

server known as Sidera that targets the commodity-based Linux
cluster. The platform consists of a network-accessible frontend
server and a series of protected backend servers that each handle
a portion of the user request. A key feature of the cluster
design is that each backend server requires little knowledge of
its siblings. In effect, each node functions independently and
merely interacts with a Parallel Service Interface (PSI) that, in
turn, coordinates communication between nodes of the sibling
network. The various constituent elements of the server have
been evaluated experimentally and demonstrate a combination of
performance and scalability that is particularly attractive given the
use of commodity hardware and open source software.
The paper is organized as follows. In Section 2, we discuss

related work. Section 3 presents a simple architectural overview,
while Sections 4 and 5 describe the processing logic and
system components for Sidera’s frontend and backend servers,
respectively. Experimental results are presented in Section 6, with
Section 7 offering concluding remarks.

2. Related work

With respect to DBMS parallelism, early work focused on the
exploitation of relatively exotic hardware in order to improve
performance for transaction-based (OLTP) queries [1,2] By the
1990s, it had become clear that commodity-based ‘‘shared noth-
ing’’ databases provided significant advantages over the earlier
SMP architectures in terms of cost and scalability [3]. Subsequent
research therefore focused on partitioning and replication models
for the tables of the parallelized DBMS [4]. More recent research

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.10.007

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:eavis@cs.concordia.ca
http://dx.doi.org/10.1016/j.future.2008.10.007


260 T. Eavis et al. / Future Generation Computer Systems 26 (2010) 259–266

Fig. 1. The core architecture of the parallel Sidera OLAP server.

in parallel systems has generally been smaller in scope and has
targeted issues such as static versus dynamic locking in parallel
contexts [5], as well as parallel file systems for transparent RAID
storage [6]. Finally, the Grid has also emerged as a novel target for
distributed processing, and a number of papers have explored the
design of protocols for scalable, Internet-based data management
systems [25].
Commercially, of course, a number of vendors have pursued

parallel implementations. Traditionally, such systems have tar-
geted tightly coupled SMP hardware. More recently, vendors have
begun to exploit more cost effective CPU and storage frameworks.
IBM, for example, is actively exploring cluster implementations [7],
while Oracle currently exploits a shared disk backend [8]. Such sys-
tems, however, are, by definition, proprietary and DBMS-specific.
In terms of OLAP/data cube research, a large number of papers

have been published since Gray et al. delivered the seminal
data cube paper in 1996 [9]. Initially, work focused on efficient
algorithms for the computation of the exponential number of
views in the complete data cube [10,11]. More recent methods
havemade an effort to support cubes that are bothmore expressive
and more space efficient. The CURE cube, for example, supports
the representation of dimension hierarchies and relatively compact
table storage [12]. In fact, we note that OLAP-specific data
structures, algorithms, indexing, and storage have consistently
been shown to provide significant performance improvements
relative to the facilities traditionally offered by relational database
management systems. Stonebraker et al., for example, suggests
that an order of magnitude improvement can be achieved via
the design and optimization of domain specific DBMS systems
(e.g., dedicated DW/OLAP servers) [24].
Finally, we have recently seen preliminary attempts to inte-

grate parallelism and data warehousing/OLAP. On the one hand, a
number of researchers have describedmethods for the paralleliza-
tion of state-of-the-art sequential data cube generation methods
[13,14]. On the other, fact table partitioning methods for cluster
implementations have been explored. Perhaps the most interest-
ing approach is one that proposes the virtualization of partial frag-
ments over physically replicated tables [15]. We note, however,
that in none of these cases do we see a comprehensive, ‘‘end-to-
end’’ proposal for OLAP parallelism.

3. The Sidera architecture

Sidera has been designed from the ground up, to function as a
parallel OLAP server. Node coordination is controlled by an MPI
(Message Passing Interface) based Parallel Service Interface (PSI)
that allows each node to participate in global sorting, merging, and

Fig. 2. Query processing cycle on the Sidera frontend.

aggregation operations. This ensures that the full computational
capacity of the cluster is brought to bear on each and every query.
Fig. 1 provides an illustration of the fundamental design. Note how
the frontend node serves as an access point for user queries. Query
reception and session management is performed at this point but
the frontend does not participate in query resolution, other than
to collect the final result from the backend instances and return
it to the user. In turn, the backend nodes are fully responsible for
storage, indexing, query planning, I/O, buffering, and meta data
management. In addition, each node houses a PSI component that
allows it to hook into the the global Parallel Service Interface.
In the remainder of the paper,we present a succinct overviewof

the frontend and backend server components. Though the focus is
on the physical architecture, we will present algorithmic elements
where necessary in order to understand the full functionality of the
system.

4. The Sidera frontend

The Sidera frontend, or head node, represents the server’s
public interface. Its core function is to receive user requests and
to pass them along to the backend nodes for resolution. Fig. 2
provides an illustration of the frontend architecture and processing
logic. Here, one can see that processing is essentially driven by
a sequence of three FIFO queues: the Pending Queue (PQ), the
Dispatch Queue (DQ), and the Results Queue (RQ). Also, in keeping
with current trends in server design, server functionality is based
upon a lightweight, multi-threaded execution model. The threads
themselves are based upon the POSIX pthread framework.
In short, as queries arrive, they are placed into the Pending

Queue and subsequently retrieved by a set of persistent query
threads (organized into a pre-initialized thread pool). Once a
query thread is notified of a pending user query, it executes the
steps outlined in Fig. 2. Upon successful authentication, a basic
syntactical check of the query is performed to ensure that it should
even be passed to the backend for resolution. If so, the query is
deposited in the Dispatch Queue and a signal is sent to the sleeping
Dispatch Thread. The Query Thread then goes to sleep. Eventually,
the final query results will return to the frontend and the sleeping
Query Thread will be notified that a result is waiting in the Result
Queue. The final result is simply returned to the user, the client-
specific socket is closed, and the Query Thread ‘‘returns’’ to the
thread pool to await the next user request.
A key element of the frontend cycle is the work of the MPI

Dispatcher thread. The job of the dispatcher is to interface with the
backend query resolution nodes. Quite simply, once the thread is
signaled that a new query is pending, it passes the query to each of
the p nodes in the cluster and waits for the results to be deposited
in a local buffer. Communication at this stage is implemented
with standard MPI Broadcast and Gather operations. We note that,
since the final result of the query request is globally sorted by the
backend nodes (one of the functions of the Parallel Serve Interface)



Download	English	Version:

https://daneshyari.com/en/article/426251

Download	Persian	Version:

https://daneshyari.com/article/426251

Daneshyari.com

https://daneshyari.com/en/article/426251
https://daneshyari.com/article/426251
https://daneshyari.com/

