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The paper proves a pumping lemma for a certain subclass of mildly context-sensitive lan-

guages, the one defined by commutation-augmented pregroup grammars; in addition, an

automaton equivalent to such grammars is introduced, augmenting push-down automata

by cancellation in the bottom of its stack.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Pregroup grammarswere introducedby Lambek [9], giving rise to a radically lexicalized theory of formal/programming/nat-

ural languages, by which properties of terminals determine the language recognized by a grammar. The rules are universal

(algebraic in this case) and do not vary with the language defined, as in rewriting grammars. In [2] Buszkowski established

the equivalence of pregroup grammars and context-free grammars in terms of weak generative power, i.e., they define the

same class of (formal) languages.

In [4], a certain generalization of pregroup grammarswas proposed,whereby the free pregroup is augmentedwith a finite

set of inequations between types, expressing commutation and cancellation during reductions. This augmentation leads to a

class of languages transcending the context-free languages and, in particular, including languages such as

(1) Reduplication: {ww : w ∈ �+}.
(2) Crossed dependency: {aibjaibj : i,j = 1,2, . . .}.
(3) Multiple agreement: {aibici : i = 1,2, . . .}.
all known as mildly context-sensitive languages (MCSL) [7].

In this paper, we

• extend the study of lexicalized definitions of (some) mildly context-sensitive languages, and state and prove a pumping

lemma for such languages; and

• introduce an automaton that recognizes these mildly context-sensitive languages.

Amore detailed comparisonwith other formalisms expressingMCSL [12], e.g., Tree-Adjoining Grammars (TAG) [8] and [11],

is deferred to future work. For a recent comparative study of MCSL see [10].
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The paper is organized as follows. In the next section, we review the definition of pregroup grammars1 and in Section 3,

we provide an alternative proof (via push-down automata) of their equivalence to context-free grammars. Section 4 reviews

the definition of restricted commutation-augmented pregroup grammars (RCAPGG) from [4] and their basic properties. It

also contains the statement of the pumping lemma for RCAPGG languageswhose proof is presented in Section 5. In Section 6,

we introduce the restricted canceling push-down automata and prove their equivalence to RCAPGGs. Finally, the last section

contains some concluding remarks.

2. Pregroup grammars

In this section, we define pregroup grammars and a certain extension thereof.

Definition 1. A pregroup is a tuple G = 〈G,≤,◦,�,r,1〉, such that 〈G,≤,◦,1〉 is a partially ordered monoid,2 i.e., satisfying (where

A, B, and C range over G)

(mon) if A � B, then CA � CB and AC � BC

and �,r are unary operations (left/right inverses/adjoints) satisfying

(pre) A�A � 1 � AA� and AAr � 1 � ArA

The following equalities can be shown to hold in any pregroup.

1� = 1r = 1, A�r = Ar� = A, (AB)� = B�A�, (AB)r = BrAr (1)

Also, (mon) together with (1) yield

A � B if and only if B� � A� if and only if Br � Ar (2)

Actually, for thedefinition of apregroup grammarweneedonly thenotionof a quasi-pregroup. Quasi-pregroups are defined

as pregroups except that the relation � being reflexive and transitive, does not have to be antisymmetric. That is, � is a

quasi-ordering.

The following construction of a free quasi-pregroup is due to Lambek, see [9]. Let B be a (finite) set. Terms are of the form

A(n), A ∈ B and n = 0, ± 1, ± 2, · · ·. The set of all terms generated by B is denoted by τ(B).

The elements of the free quasi-pregroup based on 〈B, �〉 are types3 which are finite strings of terms, ‘◦’ is just the

concatenation of types, and 1 is the empty string. The set of all types generated by B is denoted by κ(B). The length of a type

(finite string of terms) x is denoted by |x|. The adjoints are given by

•
(
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Extend ‘≤’ to κ(B) by setting it to the smallest quasi-partial-order satisfying (where γ ,δ ∈ κ(B))

(con) γA(n)A(n+1)δ � γ δ (contraction)

(exp) γ δ � γA(n+1)A(n)δ (expansion)

and

(ind) γA(n)δ � γB(n)δ if

{
A � B and n is even, or

B � A and n is odd
(induced steps)

We also use the following two derived inequalities.

(gcon) γA(n)B(n+1)δ � γ δ, if

{
A � B and n is even, or

B � A and n is odd
(generalized contraction)

and

(gexp) γ δ � γA(n+1)B(n)δ, if

{
A � B and n is even, or

B � A and n is odd
(generalized expansion)

Obviously, (con) and (exp) are particular cases of (gcon) and (gexp), respectively. Conversely, (gcon) can be obtained as4

(ind) followed by (con), and (gexp) can be obtained as (exp) followed by (ind).

Consequently, if α′ � α′′, then there exists a derivation

α′ = γ0 � γ1 � · · · � γm = α′′, m � 0

1 In fact, our definition is a bit more general than that in [2].
2 ‘◦’ is usually omitted.
3 Known also as categories.
4 Throughout, we systematically abuse notation, by using a rule name for an application of that rule.
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