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Permutominoes are polyominoes defined by suitable pairs of permutations. In this paper

we provide a formula to count the number of convex permutominoes of given perimeter.

To this aim we define the transform of a generic pair of permutations, we characterize the

transform of any pair defining a convex permutomino, and we solve the counting problem

in the transformed space.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A polyomino (also known as lattice animal) is a finite collection of square cells of equal size arranged with coincident

sides. In this paper we consider a special class of polyominoes, namely the permutominoes, that we define in a purely

geometric way. Actually, the term “permutomino” arises from the fact that this object can be defined by a diagram on the

plane representing a pair of permutations. Such diagramswere introduced in [8] as a tool to study Schubert varieties andused

in [7] (where the term “permutaomino” appeared for the first time) and [6] in relation to Kazhdan-Lusztig R-polynomials.

Counting the number of polyominoes and permutominoes is an interesting combinatorial problem, still open in its more

general form; yet, for some subclasses of polyominoes, exact formulae are known. For instance, the number of convex

polyominoes (i.e., whose intersectionwith any vertical or horizontal line is connected) of given perimeter has been obtained

in [2], whereas the enumeration problem for some subclasses of convex permutominoes has been solved in [5]. In this paper,

we provide an explicit formula for the number of convex permutominoes of a given perimeter. Incidentally, we notice that

an equivalent formula has been independently obtained in [4], using a totally different technique based on the ECOmethod.

Our counting technique is based on two basic facts. First, the boundary of every convex permutomino can be decom-

posed into four subpaths describing, in this order, a down/rightward, up/rightward, up/leftward, down/leftward stepwise

movement. Second, for each abscissa (ordinate) there is exactly one vertical (horizontal) segment in the boundary with that

coordinate. Actually, these two constraints hold not only for the boundary of convex permutominoes, but for a larger class

of circuits we call admissible: in Section 3 we describe admissible circuits and we obtain their number An in Section 5. In

Section 4 we characterize admissible circuits that do not define a permutomino: again we obtain their number Bn in Section

5. As a consequence, we get the number of convex permutominoes as the difference An − Bn.

2. Preliminaries

In this section, we shall recall some basic definitions and properties of polyominoes, permutominoes and generating

functions.
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Fig. 1. (a) The boundary of a polyomino. (b) The extreme points of a polyomino. (c) The extreme points of a convex polyomino.

2.1. Polyominoes and permutominoes

A cell is a closed subset of R2 of the form [a,a + 1] × [b,b + 1], where a,b ∈ Z; we shall identify such a cell with the pair

(a,b). Let us define a binary relation ∼ of adjacency between cells by letting (a,b) ∼ (a′,b′) if and only if a = a′ and |b − b′| = 1,

or |a − a′| = 1 and b = b′. A subset P of R2 is a polyomino if and only if it is a finite nonempty union of cells that is connected

by adjacency, i.e., such that if (a,b),(a′,b′) ∈ P then there exist (a1,b1), . . . ,(ak ,bk) ∈ P such that (a,b) = (a1,b1) ∼ (a2,b2) ∼ · · · ∼
(ak ,bk) = (a′,b′). See Fig. 1(a) for an example. A polyomino is defined up to translations; without loss of generality, we assume

that the lowest leftmost vertex of the mininal bounding rectangle of the polyomino is placed at the point (1,1).

Special types of polyominoes P are the following:

• P is row-convex if and only if (a,b),(a′,b) ∈ P and a ≤ a′′ ≤ a′ imply (a′′,b) ∈ P;

• P is column-convex if and only if (a,b),(a,b′) ∈ P and b ≤ b′′ ≤ b′ imply (a,b′′) ∈ P;

• P is convex if and only if it is both row- and column-convex;

• P is directed if and only if it contains at least one of the corner cells of its minimal bounding rectangle;

• P is parallelogram if and only if it is convex and contains at least a pair of opposite corner cells of its minimal bounding

rectangle (e.g., both the lower-left and upper-right cells).

The (topological) border of a polyomino P is a disjoint union of simple closed curves; in particular, if there is only one

curve, we say that P has no holes: all polyominoes in this work will have no holes. The border is a simple closed curve made

of alternating vertical and horizontal nontrivial segments whose endpoints (vertices) have integral coordinates; conversely,

every such a closed curve is the border of a polyomino without holes, so we shall freely identify polyominoes with their

borders.

We say that P is a permutomino of size n if and only if its minimal bounding rectangle is a square of size n − 1, and the

border of P has exactly one vertical segment of abscissa z and one horizontal segment of ordinate z, for every z ∈ {1, . . . ,n}.
Notice that, since convex polyominoes have the sameperimeter as theirminimal bounding rectangle, a convex permutomino

of size n has perimeter 4(n − 1).

In order to handle polyominoeswe introduce the following definitions. A (stepwise) simple path is a sequence P1 = (x1,y1),

P′
1

= (x′
1
,y′
1
), P2 = (x2,y2), P

′
2

= (x′
2
,y′
2
) …, Pm = (xm,ym), P′

m = (x′
m,y

′
m) of distinct points with integer coordinates such that,

for all i ∈ {1, . . . ,m}, xi = x′
i
, and y′

i
= yi+1 if i < m; notice that the segments PiP

′
i
are vertical, whereas the segments P′

i
Pi+1

are horizontal. More generaly, a path is a sequence of points P1, P
′
1
, …, Pk , P

′
k
such that, for some m ≤ k, P1, P

′
1
, …, Pm, P

′
m

is a simple path, and for all i > m, Pi = Pi−m and P′
i
= P′

i−m
. A circuit is a simple path such that y′

m = y1; when dealing with

circuits, we shall implicitly assume that the subscripts are treated modulo m; so, for example Pm+1 is just P1. A point is a

(self-)crossing point of a simple path if and only if it is the intersection of two segments, say PiP
′
i
and P′

j
Pj+1; we also say that

the path has a crossing at indices (i,j).

Clearly, visiting the border of a polyomino P counter-clockwise and starting from the highest vertex of the leftmost edge,

we identify a circuit without crossing points: we call it the boundary of P and denote it by P1,P
′
1
,P2,P

′
2
, . . . ,Pm,P

′
m (see Fig. 1(a)).

Notice that if P is a permutomino, then m = n.

In particular we consider four special points in the boundary of any polyomino P: let A = P1 be the highest vertex of the

leftmost edge, B be the leftmost vertex of the lowest edge, C be the lowest vertex of the rightmost edge, D be the rightmost

of the highest edge (see Fig. 1(b)). Notice that, if P is convex, then the subsequence of vertices between A and B (B and C, C

and D, D and P′
m, respectively) is a path directed down/rightward (up/rightward, up/leftward, down/leftward, respectively);

see Fig. 1(c).
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