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Cellular Automata can be considered discrete dynamical systems and at the same time

a model of parallel computation. In this paper we investigate the connections between

dynamical and computational properties of Cellular Automata. We propose a classification

of Cellular Automata according to the complexities which rise from the basins of attraction

of subshift attractors and investigate the intersection classes between our classification

and other three topological classifications of Cellular Automata. From the intersection

classes we can derive some necessary topological properties for a cellular automaton to

be computationally universal according to our model.
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1. Introduction

Theconceptof computationandComputation theory itself are strictly related toTuringMachines. In recentyears, however,

a new trend of investigation attempts to find connections between Dynamical System theory and Computation theory.

Cellular Automata can be considered discrete dynamical systems and at the same time a model of parallel computation.

It is well known that they have the same computational power of Turing Machines. There is no general agreement on the

concept of universality for Cellular Automata. The universality of a cellular automaton is generally proved by showing that

such automaton can simulate a universal Turing Machine [21] or some other system which is known to be computationally

universal [3]. A different approach was taken by Wolfram in [23] where the author classifies empirically Cellular Automata

in four classes according to the observed (by computer simulation) evolution of the automata on random configurations.

He suggested that Cellular Automata in the last of his classes must be capable of universal computation. Several authors

have offered formalization to Wolfram classes. We cite just few of them. Gilman [8] proposed a classification based on the

concept of equicontinuitywhileHurley [11] proposed a classification based on the concept of attractors. Kůrka [13] refined the

Equicontinuity and Attractor classifications by using purely topological definitions and investigated the intersection classes

between the two classifications and a third one based on the complexity of the languages rising from the column factors

of Cellular Automata. All three classifications are based uniquely on topological concepts and it is not evident how these

dynamical properties are related to computational properties of Cellular Automata except for the connection with Wolfram

empirical classification.

While it is generally accepted to interpret the evolution of a dynamical system as a process of computation, it is much

more less evident how to interpret the input and the output of the computation in the evolution of the system. A possible
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approach is to see the process of computation in a dynamical system as a flow toward an attractor. The attractor is considered

the halting state of the computation. One such approach has been taken in [2] to develop a complexity theory for the set of

continuous time dynamical systems defined by differential equations. A more general approach has been taken recently in

[5]. The authors rephrase the halting problem as the problem to decide if there exists at least one configuration from some

initial set whose orbit reaches some halting set. Initial and halting sets are intended to be clopen (closed and open) sets of a

Cantor space so that they can be described by means of finite information. It is easy to see how these two approaches are

related: in a compact metric space the orbit of some configuration converges to an attractor Z if and only if it enters into

all clopen invariant sets whose omega limits coincide with Z . The authors of [5] propose a definition of universality which

applies to general discrete symbolic (i.e. defined on a Cantor space) dynamical systems and they provide necessary conditions

for the universality. According to their model, a universal symbolic dynamical system is not minimal (i.e. it contains at least

one proper subsystem), not equicontinuos and does not satisfy the shadowing property. Moreover they conjecture that a

universal dynamical system must have an infinite number of subsystems.

Herewe interpret theprocess of computation inCellularAutomata as aflowtowarda subshift attractor. A subshift attractor

is an attractorwhich is invariant under the shiftmap. Subshift attractors have been investigated in [14] and [7].We show that

it is possible to restate the halting problem as the problem to decide if the omega limit of some clopen set is contained in a

halting subshift attractor (that is, as the problem to decide if the orbits of all sequences contained in some clopen set converge

to the attractor).We say that the computational complexity of a cellular automaton (AZ,F)with respect to the halting subshift

attractor Z is defined as the complexity of clopen sets contained in the basin of attraction of Z . Since a basin of attraction

is the countable union of cylinder (clopen) sets and a cylinder set can be univocally described by some word in A*, we can

characterize the complexity of basins of attraction by using Formal Language theory. We propose a classification of Cellular

Automata according to the complexity of basin languages (Section 3). A cellular automaton with highest computational

complexity has at least one subshift attractor whose basin language is recursively enumerable complete.

Since our classification is based on purely topological concepts it is easy to explore the intersection classes with other

well known topological classifications of Cellular Automata such as Attractors, Languages and Equicontinuity classifications

(Section 4). From the intersection classes we can provide necessary conditions for a cellular automaton to be universal

(Section5). Even inourmodel auniversal cellular automaton isnotminimal, not equicontinuous, doesnothave the shadowing

property and, in particular, it is not regular. It is open also in our case the question whether a universal cellular automaton

must have an infinite number of subsystems.

2. Notation and definitions

In this section,we introduce the notation and the basic concepts thatwill be necessary to understand the rest of the paper.

Cellular Automata as dynamical systems were first considered by Hedlund in the late sixties who studied this formalism

in the context of Symbolic Dynamics as endomorphisms of full shifts [10]. In this paper we will adopt Symbolic Dynamics

terminology. For an introduction in Symbolic Dynamics the reader can refer to [19] and for an introduction on Topological

Dynamics to [15]. In the following, wewill assume that the reader is familiar with Computation theory and Formal Language

theory (see, for example, [12]).

Let A be a finite alphabet with at least two elements. With AZ and AN we denote, respectively, the set of sequences (xi)i∈Z

and (xi)i∈N where xi ∈ A. For x ∈ AZ, let x[i,j] ∈ Aj−i+1 denote the word xixi+1...xj . We use the shortcutw � x to say thatw ∈ A*

is a subword of x ∈ AZ. Let us define a metric d on AZ by

d(x,y) = 2−n where n = min{|i| | xi /= yi}|.
The set AZ endowed with metric d is a compact metric space. For u ∈ A* and i ∈ Z, let

[u]i =
{
x ∈ AZ | x[i,i+|u|−1] = u

}

denote a cylinder set. Sometimes we will refer to the cylinder set [u]i simply with [u]. A cylinder set is a clopen (closed and

open) set in AZ. Every clopen set in AZ is a finite union of cylinder sets. The shift maps σ : AZ → AZ, σ : AN → AN are defined

by

σ(x)i = xi+1.

The shift map is a continuous function and it is bijective on AZ while it is not on AN. The dynamical system (AZ,σ) is called

full shift. A shift space or subshift is a non-empty closed subset � ⊆ AZ which is also strongly shift invariant, i.e. σ(�) = �.

A subshift is one-sided if it is a closed subset � ⊆ AN and it is σ -invariant, i.e. σ(�) ⊆ �. Usually we will denote the shift

dynamical system (�,σ) simply with �. A subshift � is mixing if for all clopen sets U,V ⊆ �, there exists n0 > 0 such that for

all n � n0 σn(U) ∩ V /= ∅. The language associated to a subshift � is defined as

L(�) = {w ∈ A* | ∃x ∈ �,w�x}.
Any subshift � is completely determined by the set of its forbidden words A* \ L(�) (see [19]). A shift of finite type (SFT)

is a subshift which can be defined by a finite set of forbidden words. The language L(�) of a subshift � is bounded periodic
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