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The descriptional complexity of restarting automata is investigated. We distinguish the

classes of weak restarting automata, i.e., classical restarting automata accepting exactly the

regular languages. In order to investigate the descriptional power gained by the additional

structural resources of restarting automata, we study the trade-offs in the number of states

when changing the representation to classical finite automata. The bounds shown are tight

in the exact number of states. Interestingly, for a particular class we can show the tight

bounds 2n + 1 and 2n for DFA and NFA conversion, respectively, by a fooling set technique.

So, the power gained by the resources given to restarting automata seems to be different

compared with nondeterminism.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Restarting automata have been introduced in [7] in order to model the so-called “analysis by reduction,” which is a

technique used in linguistics to analyze sentences of natural languages that have a high degree of free word order. The

technique consists of stepwise simplification of an extended sentence such that the (in)correctness of the sentence is not

affected. A restarting automaton is a finite state device thatworks on aflexible tape. Attached to the automaton is a read-write

(or lookahead) window of fixed size. The automaton works in several cycles. In one cycle it moves the window from left to

right along the tape. Depending on the current state and the current content of the window the automaton can continue to

scan the input, can rewrite the window content by some shorter string, can accept the input, can halt without accepting, or

can restart, i.e., start a new cycle by placing the window back on the left end of the tape and resetting to the initial state.

Different variants of restarting automata have been investigated, mainly from a computational capacity point of view.

Several well-known language families are characterized by some variant in a unified framework. For example, characteri-

zations are known for deterministic and nondeterministic context-free languages [9], for Church–Rosser languages [15,16],

and for regular languages [14]. Introductions to and surveys of restarting automata are [17,18], which are valuable sources

for further results and references.

Our main interest is in the descriptional power gained by the additional structural resources of restarting automata [19].

For some variants it is known that there are savings in the size of description which cannot be bounded by any recursive

functionwhen changing from one type of system to another. A good example for such a non-recursive trade-off are restarting

automata characterizing the context-free languages, and restarting automata characterizing the Church–Rosser languages.

See [6,19] for further examples, and [12] for a survey of non-recursive trade-offs in general.

Here we are particularly interested in weak restarting automata, i.e., restarting automata that accept exactly the regular

languages. Since regular languages have many representations in the world of finite automata it is natural to investigate

the succinctness of these representations in order to optimize space requirements. Here we consider the number of states

as complexity measure. Throughout the paper we always assume deterministic finite automata (DFA) to be complete. It is
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well known that nondeterministic finite automata (NFA) can offer exponential saving in the number of states comparedwith

deterministic finite automata, but the problem to convert a given DFA to an equivalentminimal NFA is PSPACE-complete [10].

Furthermore, asymptotically tight bounds areO(nn) for the two-way DFA to one-way DFA conversion,O(2n
2
) for the two-way

NFA to one-way DFA conversion, and 2n for the one-way NFA to one-way DFA conversion. For finite languages over a k-letter

alphabet the NFA to DFA conversion has been solved in [20] with a tight bound of O(k
n

log2 k+1 ). A valuable source for further

results and references is [4].

The paper is organized as follows. The next section contains preliminaries and basics on restarting automata. In order to

meet our objective, we have to distinguish the variants of restarting automata that accept exactly the regular languages. We

discuss this problem in the next and solve it in the last section. Section 3 is devoted to the trade-offs in the number of states

when changing the representation from nondeterministic R(1)-automata to DFAs or NFAs. Interestingly, we can show the

tight bounds2n + 1and2n. So, thepowergainedby the resources given to restarting automata seems tobedifferent compared

with nondeterminism. Next, Section 4 dealswith deterministicRR(1)-automata. Herewe prove their computational capacity

to be equivalent to finite automata. The proof concludes the distinction of restarting automata accepting regular languages.

For the conversion to an NFA we show the tight trade-off of (2n − r + 2) · 2r−1 ∈ O(n · 2n), where r is the number of different

states reachable after a rewrite step.

2. Restarting automata

For an alphabet A, let A+ be the set of nonempty words w over A. If the empty word λ is included, then we use the

notation A*. For the length of w we write |w|. The set of words of length n � 0 is denoted by An. If n is an upper bound for

the length, we write A�n, which is defined to be
⋃n

i=0 A
i.

Concerning the notions and definitions of restarting automata, we follow the presentation in [17]. Let T be some tape

alphabet, and� and� the left and right endmarker of theworkspace, then the possible contentsWk of a read-write window

of size k � 2 are Wk = (�Tk−1) ∪ Tk ∪ (T�k−1�) ∪ (�T�k−2�). For k = 1, we have W1 = {�} ∪ T ∪ {�}.
A nondeterministic restarting automaton (RRWW-automaton) is a systemM = 〈S,A,T ,�,�,s0,k,δ〉, where S is the finite set of

internal states, A is the finite set of input symbols, T is the finite set of tape symbols containing A, � /∈ T is the left and � /∈ T

is the right endmarker of the workspace, s0 ∈ S is the initial state, k � 1 is the size of the read-write window, and δ is the

partial transition function mapping S × Wk to the finite subsets of

(
S × (

⋃k−1
i=1 Wi ∪ {λ,MVR})

)
∪ {Restart,Accept}, where δ

satisfies the following condition: If (q′,v1 . . . vi) ∈ δ(q,u1 . . .uj), u1, . . . ,uj ,v1, . . . ,vi ∈ T ∪ {�,�}, then (i) i < j, (ii) u1 = � if and

only if v1 = �, and (iii) uj = � if and only if vi = �.

The transition function allows four different types of steps. Let M be in a state s with u ∈ Wk in its read-write window. A

move-right step of the form (s′,MVR) ∈ δ(s,u) is applicable if u /= �. It causes M to shift the read-write window one position

to the right and to enter state s′ ∈ S. A rewrite step of the form (s′,v) ∈ δ(s,u) is applicable if u /= �. It causes M to replace the

content of the read-write window by v, to enter state s′, and to place the read-write window immediately to the right of v.

If u (and v) ends with �, the read-write window is placed on �. A restart step of the form Restart ∈ δ(s,u) causes M to place

the read-write window back on the left end of the tape such that � appears as the leftmost symbol in the window, and to

enter the initial state s0. An accept step of the form Accept ∈ δ(s,u) causes M to halt, and to accept.

Each computation ofM proceeds in cycles. Starting from an initial configuration s0�w�, the windowmoves right until a

restart step takesM back into a configuration of the form s0�w′�. It is required that in each cycle exactly one rewrite step is

performed. The part of the computation that follows the last restart step is called the tail of the computation. It contains at

most one rewrite step. We denote the transition from some configuration to a successor configuration by �, and write �* for

the reflexive and transitive closure of that relation. An input w ∈ A* is accepted by M, if there is a computation which starts

with the initial configuration s0�w� and ends with an accept step. By L(M) we denote the language accepted by M. Similar

notions are used for other types of acceptors, too.

We omit an R of the type of restarting automata and obtain R(W)(W)-automata, if a restart step is conjoint with a rewrite

step, i.e., whenever a rewrite step is performed the read-write window is placed back on the left end of the tape, and the

initial state s0 is entered. We omit oneW obtaining R(R)W-automata, if the tape alphabet is equal to the input alphabet, and

omit bothW obtaining R(R)-automata, if the string v of each rewrite step (s′,v) ∈ δ(s,u) is a scattered subword of u, i.e., it is

obtained by deleting some symbols from u. We use the prefix det- in order to denote deterministic automata.

As mentioned in the introduction, we are interested in weak restarting automata, i.e., restarting automata that accept

exactly the regular languages. In view of the nonrecursive trade-offs between different classes of restarting automata, it

seems that we need a finer control of the descriptional capacity than offered by controlling the resources nondeterminism

or the general write and read behavior. A good candidate is the size of the read-write window. The window size can be

seen as the length of the lookahead. Related studies concern the trade-offs between LR(k) and LR(k + 1) [13], and between

LL(k) and LL(k + 1) [1] grammars, respectively. In [14] restarting automata with bounded lookahead are studied from a

computational capacity point of view. In particular, it has been shown that for all k � 1, there exists a language L accepted

by some deterministic R-automaton with window size k + 1 such that L is not accepted by any nondeterministic RRW-

automatonwith window size k. This result implies infinite lookahead hierarchies for the variants of restarting automata that
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