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For each integer n � 8 ,we construct an n-state synchronizing automationwith a zero state

and only 2 input letters such that the minimum length of reset words for the automaton is[
n2+6n−16

4

]
.
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1. Background and motivation

A deterministic finite automaton (DFA) A is a triple 〈Q ,�,δ〉 , where Q is a finite set of states, � is a finite alphabet, and

δ : Q × � → Q is a totally defined transition function. The function δ extends in a unique way to an action Q × �* → Q of

the free monoid �* over � ; this extension is still denoted by δ .

A DFA A is called synchronizing if there exists a word w ∈ �* whose action resets A , that is, leaves the automaton in one

particular state no matter at which state in Q it started: δ(q,w) = δ(q′,w) for all q,q′ ∈ Q . Any word w with this property is

said to be a reset or syncronizing word for the automaton.

Černý [5] constructed for each positive integer n an n-state synchronizing automaton with 2 input letters such that

the minimum length of reset words for the automaton is (n − 1)2 . The famous Černý conjecture claims the optimality of

this construction, that is, (n − 1)2 is conjectured to be the precise value for the maximum length of shortest reset words

for synchronizing automata with n states. The conjecture remains open for more than 40 years and is arguably the most

longstanding open problem in the combinatorial theory of finite automata.

Upper bounds within the confines of the Černý conjecture have been obtained for the maximum length of shortest reset

words for synchronizing automata in some special classes, see, e.g. [7,10,6,8,2,3,4,11]. One of these classes is the class of

automata with a zero state. A state z of a DFA A = 〈Q ,�,δ〉 is said to be a zero state if δ(z,a) = z for all a ∈ � . It is clear that a

synchronizingautomaton may have at most one zero state and each word that resets a synchronizing automaton possessing

a zero state must bring all states to the zero state. We always denote the zero state of a synchronizingautomaton by 0 and

refer to synchronizing automata with 0 as synchronizing 0-automata.

A rather straightforward argument shows that every n-state synchronizing 0-automaton can be reset by aword of length
n(n−1)

2
, see, e.g. [10]. This upper bound is in fact tight because, for each n , there exists a synchronizing 0-automaton with n
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Fig. 1. A 0-automaton whose shortest reset word is of length n(n−1)
2

.

states and n − 1 input letters which cannot be reset by any word of length less than n(n−1)
2

. Such an automaton1 is shown

in Fig. 1.

An essential feature of the example in Fig. 1 is that the input alphabet size growswith the number of states. This contrasts

with the aforementioned examples due to Černý [5] inwhich the alphabet is independent of the state number and leads to the

following natural problem: to determine the maximum length of the shortest reset word for n-state synchronizing 0-automata

over a fixed input alphabet. The most interesting case is a case of 2-letter input alphabet. To the best of our knowledge, all

previously known results in the areawere consistent with the possibility that thismaximum lengthwould behave as a linear

function of n . Moreover, such a linear upper bound does exist for so-called monotonic synchronizing 0-automata as follows

from a recent result in [1].

The main result of the present paper shows that for general synchronizing 0-automata no such linear upper bound can

exist by exhibiting a series of n-state synchronizing 0-automata whose shortest reset words are of length n2

4
+ o(n2) . More

precisely, we have the following

Theorem 1. For each integer n ≥ 8, there exists a synchronizing 0-automaton An with n states and 2 input letters such that

the length of the shortest reset word for An is
⌈
n2+6n−16

4

⌉
.

In Section 2 we present the construction of the automaton An for even n and prove Theorem 1 for this case. The

construction for odd n is presented in Section 3 but the corresponding proof (which is pretty similar to the one in the

even case) is not included due to space constraints. Section 4 contains some numerical results and a discussion.

2. The automata An , n is even

We fix an even number n = 2m ≥ 8 and let A2m be the DFA (Q ,{a,b},δ) , where Q = {0, . . . ,2m − 1} , and the transition

function δ is defined as follows:

δ(i,a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i = 0,

i − 1 if i = 1, . . . ,m − 1,

2m − 2 if i = m,

i − 1 if i = m + 1, . . . ,2m − 2,

2m − 1 if i = 2m − 1;

δ(i,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0,

m if i = 1, . . . ,m − 1,

m − 1 if i = m,

2m − 1 if i = m + 1,

i + 1 if i = m + 2, . . . ,2m − 3,

m + 1 if i = 2m − 2,

m + 2 if i = 2m − 1.

The automaton is shown in Fig. 2. Clearly, 0 is a zero state in the automaton A2m .

For the sequel, we need some notation. For a word w ∈ {a,b}* , we denote by |w| the length of w and by w[i] , where

1 ≤ i ≤ |w| , the ith letter in w from the left. If 1 ≤ i ≤ j ≤ |w| , we denote by w[i,j] the word w[i] · · ·w[j] .
For every subset S ⊆ Q and every word w ∈ {a,b}* , we define

δ(S,w) =
⋃
q∈S

{δ(q,w)}, δ(S,w−1) = {q ∈ Q | δ(q,w) ∈ S}.

If δ(q,w) = δ(q′,w) for two different states q,q′ ∈ Q , we say that the word w merges the states q and q′ .

1 We were not able to trace the origin of this series of synchronizing automata. It is contained, for instance, in [10] but it should have been known long

before [10] since a very close series had appeared already in [9].
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