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A restarting automaton processes a givenword by executing a sequence of local simplifica-

tions until a simple word is obtained that the automaton then accepts. Such a computation

is expressed as a sequence of cycles. A nondeterministic restarting automaton M is called

correctness preserving, if, for each cycle u �c
M v, the string v belongs to the characteristic

language LC (M)ofM, if the stringudoes.Ourfirst result states that for each typeof restarting

automatonX ∈ {R,RW,RWW,RL,RLW,RLWW}, ifM is a nondeterministicX-automaton that

is correctness preserving, then there exists a deterministic X-automaton M1 such that

the characteristic languages LC (M1) and LC (M) coincide. When a restarting automaton

M executes a cycle that transforms a string from the language LC (M) into a string not

belonging to LC (M), then this can be interpreted as an error of M. By counting the number

of cycles itmay takeM to detect this error, we obtain ameasure for the influence that errors

have on computations. Accordingly, this measure is called error detection distance. It turns

out, however, that an X-automaton with bounded error detection distance is equivalent

to a correctness preserving X-automaton, and therewith to a deterministic X-automaton.

This means that nondeterminism increases the expressive power of X-automata only in

combination with an unbounded error detection distance.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

From a theoretical point of view restarting automata can be seen as a tool that yields a very flexible generalization of

analytical grammars. They are analyzers that implement basic aswell as enhanced features of analytical grammars. Theywere

introduced in [3] tomodel the so-called analysis by reduction of natural languages. Analysis by reduction in general facilitates

the development and testing of categories for syntactic and semantic disambiguation of sentences of natural languages. It is

often used (implicitly) for developing formal descriptions of natural languages based on the notion of dependency [9,10,16].

Analysis by reduction consists in stepwise simplifications (reductions) of a given sentence, possibly enrichedby syntactical

and semantical categories, until a correct simple sentence is obtained. Each simplification replaces a small part of the sentence

by an even shorter phrase. These reductions are required to meet the so-called error preserving property, which states that

an incorrect sentence can never be transformed into a correct sentence, and the correctness preserving property, which states

that a correct sentence cannot be transformed into an incorrect one.

Here, we formalize analysis by reduction by using nondeterministic restarting automata. To each sentence of the language

recognized, a restarting automaton M associates all the corresponding derivations through sequences of reduction steps.

These reduction steps transform a word that does not belong to the characteristic language LC (M) of M to sentential forms

that do not belong to this language, either, which shows thatM has the error preserving property. On the other hand, it is only

deterministic restarting automata that in general also satisfy the complementary property of being correctness preserving,
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which states that any cycle of M that starts from a string belonging to the language LC (M) will again give a string from that

language. Accordingly, a nondeterministic restarting automaton is called correctness preserving if it satisfies this additional

property.

Because of the importance of the correctness preserving property for modelling analysis by reduction, it is quite natural

to study nondeterministic restarting automata that have this property. What is the expressive power of correctness pre-

serving (nondeterministic) restarting automata in comparison to deterministic restarting automata on the one hand and to

unrestricted nondeterministic restarting automata on the other hand? In fact, we consider this question for various different

types of restarting automata that are distinguished by the way in which they move their read/write window across their

tape and by the kind of rewrite operations they are allowed to execute. Actually we distinguish between nine such classes of

restarting automata, from R- to RLWW-automata (see Section 2 for the definitions).

By presenting corresponding example languages we will see that for nondeterministic RR(W)(W)-automata, the correct-

ness preserving variants are strictly more expressive than the corresponding deterministic variants. On the other hand, for

nondeterministic R(W)(W)- and RL(W)(W)-automata, the correctness preserving variants are just as expressive as the corre-

sponding deterministic variants. In fact, we present constructions that transform a nondeterministic correctness preserving

restarting automaton of one of these types into a deterministic restarting automaton of the same type that accepts the same

input and characteristic languages. This result,which is a generalization of the corresponding result for simple t-RL-automata

established in [11], shows that for these types of restarting automata the correctness preserving property severely restricts

the power of nondeterminism. Or, put in more positive terms, it stresses the expressive power of deterministic restarting

automata.

Intuitively, the correctness preserving property is a rather severe restriction on the way in which nondeterminism can

be exploited by nondeterministic restarting automata. This is supported by the results above. Can we relax the correctness

preserving property in such a way that some nondeterminism can be used without obtaining the full expressive power of

unlimited nondeterminism? Here, we introduce and study such relaxations of the correctness preserving property in the

form of the so-called error detection distance.

IfM is a nondeterministic restarting automaton that is not correctness preserving, thenM can execute cycles of the form

u �c
M v, where u ∈ LC (M) and v �∈ LC (M). This can be interpreted as an error ofM. If, starting from the restarting configuration

q0�v$, M detects its error and rejects without completing another cycle, then we say that M has error detection distance

1. More generally, if M detects its error after executing at most i − 1 further cycles starting from q0�v$, then we say that

M has error detection distance i. Thus, error detection distance 0 corresponds to the correctness preserving property, that

is, having error detection distance i > 0 is a less severe restriction for restarting automata than the correctness preserving

property. While for an unrestricted nondeterministic restarting automaton M, LC (M) can be an NP-complete language [4],

we will see that the membership problem for the language LC (M) is solvable in polynomial time, if M has bounded error

detection distance. In fact, the degree of the polynomial time bound depends on the value of the error detection distance of

M. Thus, a bounded error detection distance does indeed limit the influence of nondeterminism on the expressive power of

nondeterministic restarting automata.

This raises the question of whether we obtain hierachies of language classes based on the minimal error detection

distance of restarting automata that accept these languages. However, as we will see this is not the case. In fact, for all types

of restarting automata, wewill show that the corresponding hierarchies consist of only two levels: error detection distance 0

andunbounded error detectiondistance. This is shownbypresenting constructions that, given a restarting automatonMwith

error detection distance i > 0 as input, yield a restarting automatonM′ of the same type asM such thatM′ accepts the same

characteristic language as M, but M′ has error detection distance 0, that is, M′ is correctness preserving. In combination

with our results on correctness preserving restarting automata above, this implies that nondeterministic R(W)(W)- or

RL(W)(W)-automata of bounded error detection distance are not more expressive than the corresponding deterministic

types of restarting automata. Thus, it is the unbounded error detection distance in combination with nondeterminism that

makes nondeterministic restarting automata more expressive than the corresponding deterministic variants.

This paper is structured as follows. After restating the basic definitions on restarting automata in Section 2, we study

the correctness preserving property in Section 3. In Section 4, we define the error detection distance, and present the

announced polynomial-time algorithm for the uniform membership problem for the class of characteristic languages of

restarting automata with fixed error detection distance. Then we study the influence of bounded error detection distance on

the expressive power of restarting automata (Section 5). The paper closes with a short summary and some remarks about

open problems related to our studies.

2. Definitions and notation

Here, we describe in short the type of restarting automaton we will be dealing with. More details on restarting automata

in general can be found in [13,14].

A two-way restarting automaton,RLWW-automaton for short, is a nondeterministicmachineMwith a finite-state control,

a flexible tape with end markers, and a read/write window of a fixed size. Formally, it is defined as M = (Q ,�,�,�,$,q0,k,δ),
where Q is a finite set of states containing the initial state q0, � is a finite tape alphabet that in addition to the input alphabet

� may also contain a finite number of so-called auxiliary symbols, and � and $ are the left and right border markers for the
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