
Future Generation Computer Systems 25 (2009) 747–755

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An agent architecture for managing data resources in a grid environment
María S. Pérez a,∗, Alberto Sánchez a, Jemal H. Abawajy b, Víctor Robles a, José M. Peña a
a DATSI. FI. Universidad Politécnica de Madrid, Spain
b Deakin University, Victoria, Australia

a r t i c l e i n f o

Article history:
Received 20 January 2006
Received in revised form
2 July 2008
Accepted 22 July 2008
Available online 31 July 2008

Keywords:
Multiagent system
Cooperation
Parallel file system
Data grid

a b s t r a c t

The agent paradigm has been successfully used in a large number of research areas. MAPFS, a parallel
file system, constitutes one successful application of agents to the I/O field, providing a multiagent I/O
architecture. Theuse of amultiagent system implies coordination and cooperation among its agents.MAPFS
is oriented to clusters of workstations, where agents are applied in order to provide features such as
caching or prefetching. The adaptation of MAPFS to a grid environment is named MAPFS-Grid. Agents
can help to increase the performance of data-intensive applications running on top of the grid.
This paper describes the conceptual agent framework and the communication model used in MAPFS-

Grid, which provides the management of data resources in a grid environment. The evaluation of our
proposal shows the advantages of using agents in a data grid.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Several agent-based applications have been built in diverse
areas such as business [20], electric management [19,7], control [2,
3], networks [11] or in general, industrial applications [17,18].
Agents provide several concepts, which allow software engi-

neers to design applications in a way closer to the human thought.
Furthermore, agents offer useful characteristics to deal with com-
plex and dynamic environments.
Nevertheless, if our objective is applying the agent technology

to a field, like operating systems, we find some difficulties. In
fact, there are important limitations when agents are applied
to operating systems. These can make complex the success
combination of these two fields. The most important ones are:

• The agent paradigm interactswith the infrastructure at a higher
level than the operating system.
• Efficiency is a very strict requirement in the case of the
development of a component of the operating system, and
specifically a file system. Agent technology introduces an
abstraction layer and, thus, it involves a loss of efficiency.

Nevertheless, these limitations can be avoided, since the
agent paradigm distinguishes clearly between agent theory,

∗ Corresponding address: DATSI. FI. Universidad Politecnica de Madrid, Facultad
de Informatica, Campus deMontegancedoBoadilla del Monte, 28660Madrid, Spain.
Tel.: +34 91 336 73 80; fax: +34 91 336 73 73.
E-mail addresses:mperez@fi.upm.es (M.S. Pérez), ascampos@fi.upm.es

(A. Sánchez), jemal@deakin.edu.au (J.H. Abawajy), vrobles@fi.upm.es (V. Robles),
jmpena@fi.upm.es (J.M. Peña).

which provides concepts related to the agent field, and agents
architectures, which offer specific solutions and implementations.
MAPFS is a successful application of the agent theory in the

development of a parallel file system [26]. The same philosophy
is applied to the design of MAPFS-Grid [27], the adaptation of this
parallel file system to data grids. Our proposal is to demonstrate
thatMAPFS-Grid takes advantage of the use of amultiagent system
as a conceptual framework in its design and development.
The outline of this paper is as follows: Section 2 introduces

the MAPFS-Grid system and describes the related work. Section 3
describes the generic structure of an agent in MAPFS-Grid.
Section 4 analyzes the MAPFS-Grid cooperation model and
describes the communication features of MAPFS-Grid. Section 5
shows the implementation and evaluation of MAPFS, in order
to measure the influence of agents in the management of data
resources. Finally, Section 6 summarizes our conclusions and
suggests future work.

2. Problem statement and related work

2.1. MAPFS-Grid overview

MAPFS-Grid [27,30,31] is a generic framework for increasing
the performance of I/O operations in grid environments. Thus,
MAPFS-Grid is a suitable approach for data-intensive applications
executed on data grids.
MAPFS-Grid makes use of MAPFS [26], a high-performance

parallel file system for clusters of workstations. MAPFS (Multi
Agent Parallel File System) has been developed in the Universidad
Politécnica de Madrid since 2003. The main contribution of

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.07.011

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mperez@fi.upm.es
mailto:ascampos@fi.upm.es
mailto:jemal@deakin.edu.au
mailto:vrobles@fi.upm.es
mailto:jmpena@fi.upm.es
http://dx.doi.org/10.1016/j.future.2008.07.011


748 M.S. Pérez et al. / Future Generation Computer Systems 25 (2009) 747–755

MAPFS is the conceptual use of agents to offer new properties
to applications, with the aim of increasing their adaptation to
dynamic and complex environments.
The feasibility of the combination between MAPFS and MAPFS-

Grid is due to the fact that grid environments are composed of
different and heterogeneous resources, clusters being one of the
most used, because of its good relation power vs. cost. Thus, it
is possible to improve the grid data operations through parallel
accesses into the clusters resources. MAPFS distributes data stripes
over all the nodes of a cluster. On the other hand, MAPFS-Grid
allows heterogeneous servers connected by means of a wide-area
network to be used as data repositories, by storing data in a parallel
way through all the clusters and individual nodes which compose
the grid.
The heterogeneity of grid environments makes the application

of parallelism difficult. In fact, since every resource of the grid can
be composed of several components (e.g., clusters ofworkstations),
it is necessary to optimize the I/O performance of every resource
before tackling the global I/O optimization. Therefore, MAPFS-Grid
provides two levels of software parallelism in a grid:

(1) The high level provides parallelism among the grid storage el-
ements, that is, inter-storage element parallelism. These clusters
can be heterogeneous and belong to different virtual organiza-
tions. The only requirement is that the user application must
have permission on the final storage elements.

(2) The low level provides parallelism among the set of nodes
of each cluster, that is, intra-cluster parallelism. This is made
through the Parallel Data Access Service (PDAS) of MAPFS-Grid,
which allows parallel I/O operations to be made in a cluster
environment, providing access to the MAPFS file system.

Both levels are integrated and cooperate with the aim of
providing an enhanced I/O bandwidth. Fig. 1 shows the double
parallelism of MAPFS-Grid. The inner level is achieved only if the
storage element is a cluster of nodes. The outer level is provided
among a set of storage elements, at grid level.
MAPFS is based on a multiagent architecture, named MAPFS_

MAS, which provides support to the main MAPFS subsystem
(MAPFS_FS) in three different areas:

• Access to the information: This feature is the main task
of MAPFS_MAS. Data is stored in I/O nodes (a set of disks
distributed among several server nodes). Two different kinds
of agents are used for providing this capability: Extractor
agents are responsible for invoking parallel I/O operations and
distributor agents distribute the workload to extractor agents.
• Caching andprefetching services:MAPFS takes advantage of the
temporal and spatial locality of data stored in servers. A cache
has a copy of the most recently used data in a storage device,
which is faster than the original storage device. However,
using a cache causes an important coherence problem. Inside
MAPFS_MAS, there is a set of agents whichmanage this feature.
These agents are named cache agents. They are responsible
for using a cache coherence protocol and control data transfer
between both storage devices.
• I/O optimizations: MAPFS takes advantage of different I/O
optimizations techniques, such as caching and prefetching or
use of hints. Hints are structures known and built by the
file system, which are used for improving the read and write
routines performance. In MAPFS, hints can be determined in
two ways: (i) they can be given by the user, that is, the user
application provides the necessary specifications to the file
system for increasing the performance of the I/O routines, and
(ii) they can be built by the MAPFS multiagent subsystem. This
last feature is performed by hints agents. A case study of the use
of hints is described in [29].

Files are stored finally in several servers, which constitute the
server-side of the underlying architecture. The grouping of servers
from a logical point of view in MAPFS is denominated storage
group [28]. These groups take the role of data repositories and can
be built applying several policies, trying to optimize the access
to all the storage groups. We refer the reader to [28] for a more
detailed description of the concept of storage group.
As previously mentioned, the use of a multiagent system

implies coordination among their agents. The main goal of the
agents cooperation is the interaction among such agents to achieve
a common objective in a distributed system.

2.2. Related work

Nowadays, most of the frameworks are influenced by their
environment. Indeed, the environment conditions affect their
performance in a dynamic way. For this reason, the use of
the agent technology is being widely used, since this paradigm
is characterized by its adaptation to changing and dynamic
environments. The agent paradigm is usually implemented on
distributed systems.
A very important characteristic of agents is the cooperation. The

agents cooperation can be made through a set of steps [16]:

• It is necessary to specify the goals of all the agents, that is,
the descriptions of the desired state of the agents ‘‘world’’ or
environment.
• Every agent must perform a set of actions in order to modify its
state. Besides, plans containing precise instructions to achieve
goals or objectives must be built.
• Every agent must have scheduled a set of events.
• According to this scheduling, the agent must run the plan.
• The cooperation is achieved using shared plans, that is, sharing
the scheduling.

In a complex system, the interaction of several agents is
required and, thus, a mechanism of communication between
agents is necessary. For achieving agents communication and
interoperability, it is necessary to use:

• A common language;
• common ideas about the knowledge agents interchange;
• capacity for interchanging this information.

With the aim of standardizing this way of communication, a
common or standard language is used. KQML (Knowledge Query
Manipulation Language) [6,1,8], is one of the most known agent
communication languages. This language is composed of a set of
messages, known as performatives, which are used for specifying
agent communication elements. In [22], Labrou and Finin widely
describe the KQML reserved performatives. Some of them are used
in MAPFS, which takes advantage of agent properties to increase
the I/O performance.
The idea of using agents to access data is not an innovative idea.

Nowadays, a great number of agents platforms are deployed for
accessing web databases. The web popularity has created the need
for developing Web Distributed Database Management Systems
(DBMSs), obtaining simple data distribution, concurrency control
and reliability. However, DBMSs offer limited flexibility, scalability,
and robustness. Some suggestions propose the use of agents to
solve this problem [32,25].
With regard to file management, several approaches have

been developed. MESSENGERS [4] is a system based on mobile
agents used for the development and deployment of distributed
applications, named messengers. This system is composed of a set
of daemons distributed in every node. They are used for managing
received agents, supervising their execution and planning where
agents must be sent.



Download	English	Version:

https://daneshyari.com/en/article/426286

Download	Persian	Version:

https://daneshyari.com/article/426286

Daneshyari.com

https://daneshyari.com/en/article/426286
https://daneshyari.com/article/426286
https://daneshyari.com/

