
Future Generation Computer Systems 23 (2007) 671–679
www.elsevier.com/locate/fgcs

An autonomic tool for building self-organizing Grid-enabled applications

Gianluigi Folino, Giandomenico Spezzano∗

Institute of High-Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Bucci 41C, I-87036 Rende (CS), Italy

Received 15 December 2005; received in revised form 22 November 2006; accepted 24 November 2006
Available online 10 January 2007

Abstract

In this paper we present CAMELotGrid, a tool to manage Grid computations of Cellular Automata that support the efficient simulation of
complex systems modeled by a very large number of simple elements (cells) with local interaction only. The study of these systems has generated
great interest over the years because of their ability to generate a rich spectrum of very complex patterns of behavior out of sets of relatively
simple underlying rules. Moreover, they appear to capture many essential features of complex self-organizing cooperative behavior observed
in real systems. The middleware architecture of CAMELotGrid is designed according to an autonomic approach on top of the existing Grid
middleware and supports dynamic performance adaptation of the cellular application without any user intervention. The user must only specify,
by global criteria, the high level policies and submit the application for execution over the Grid.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Grid computing; Autonomic computing; Cellular automata

1. Introduction

The emergence of Computational Grids [12] as the next
generation distributed computing platform has enabled a
new generation of applications based on seamless access,
aggregation and interaction. For example, it is possible to
conceive a new generation of scientific and engineering
simulations of complex physical phenomena that combine
computations, experiments, observations, and real-time data
and can provide important insights into complex systems such
as road traffic, image processing, landslide simulation and
science of materials.

Many of these phenomena have been successful modeled
and simulated by cellular automata (CA) [24]. CA are
mathematical models for complex natural systems containing
large numbers of simple identical components with local
interactions. They consist of a lattice of sites, each with a
finite set of possible values. The value of the sites evolve
synchronously in discrete time steps according to identical
rules. The value of a particular site is determined by the
previous values of a neighborhood of sites around it. CA
are discrete dynamical systems with simple construction
but complex self-organizing behavior. Current CA packages

∗ Corresponding author.
E-mail address: spezzano@icar.cnr.it (G. Spezzano).

are either specialized single node programs or they are
programming environments for building parallel applications.
Today, with the current trend for larger scale CA problem
solutions, we need Grid-enabled implementations of CA.

Computational Grids provide the software and networking
infrastructure to harness a heterogeneous environment that
includes geographically distributed computer domains, to
form a massive computing environment through which large
scale problems can be solved. To achieve this goal, Grids
need to support various tools and technologies that can
guarantee security, uniform access, resource management,
scheduling, application composition, computational economy
and accounting [3].

Realizing software systems on the Grid requires not only the
knowledge of standards such as OGSA (Open Grid Services
Architecture) and tools like Globus [11], but also sophisticated
paradigms that effectively hide the complexity of creating and
deploying truly parallel Grid applications in the presence of
dynamicity, adaptivity and fault tolerance.

High level problem solving environments (PSEs) provide
a general, uniform framework allowing researchers to
concentrate on their specific system of interest without being
involved in the lower level parallelization tasks. However,
building PSEs in a computational grid infrastructure [26,19]
is a challenging task because the concurrent program, which

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.11.003

http://www.elsevier.com/locate/fgcs
mailto:spezzano@icar.cnr.it
http://dx.doi.org/10.1016/j.future.2006.11.003


672 G. Folino, G. Spezzano / Future Generation Computer Systems 23 (2007) 671–679

represents the runtime of the application, must dynamically
adapt to changing resource availability in the grid environment.
Supporting dynamically configurable programs requires a
programming paradigm and management techniques that deal
with complexity, heterogeneity and uncertainty. This has led
researchers to consider alternative programming paradigms
based on the strategies used by biological systems that exhibit a
self-organizing behavior and that have been recognized suitable
for managing distributed resources.

A significant bio-inspired paradigm has been defined
by IBM in its “Autonomic Computing” program [16].
An autonomic computing system is a system which has
the capabilities of being self-defining, self-healing, self-
configuring, self optimizing, etc. and is able to manage itself
without involving the user, in the same way the autonomic
nervous system regulates the body systems without conscious
input from the individual. The user must only specify, by global
criteria, the high level policies (runtime partitioning strategies,
etc.) and submit the application for execution over the Grid.

In this paper, we present CAMELotGrid, the Grid-enabled
version of the CAMELot (Cellular Automata environMent for
systEms ModelLing open technology) PSE developed in the
Esprit project COLOMBO [18,8]. CAMELotGrid is a new
middleware designed on top of the existing Grid middleware,
which uses autonomic Grid functionality to intelligently
manage problem partitioning, problem piece deployment,
runtime management, dynamic level of parallelism, dynamic
load balancing, and, in future, even fault tolerance and recovery.

The remainder of this paper is organized as follows.
Section 2 briefly presents an overview of CAMELot. Sections 3
and 4 describe how to specify autonomic requirements of
a cellular application and the middleware architecture of
CAMELotGrid. Section 5 illustrates the performance model
for predicting application execution time and in Section 6 we
evaluate the application performance using a landslide cellular
model. Section 7 concludes with a summary.

2. CAMELot overview

CAMELot is a high performance simulation environment
based on the CA formalism [25]. In our approach, a cellular
algorithm is composed of all the transition functions of the
cells that compose the lattice. Each transition function generally
uses the same local rule, but it is possible to define some
cells with different transition functions (heterogeneous cellular
automata). Unlike early cellular approaches, in which cell state
is defined as a single bit or a set of bits, we define the state of a
cell as a set of typed sub-states. This allows extending the range
of applications that can be programmed by cellular algorithms.
Furthermore, we introduce a logic neighborhood that may
represent a wide range of different neighborhoods inside the
same radius and that may also be time-dependent. We have
also implemented some mechanisms to observe and control
the evolution of the automaton. The CAMELot simulation
environment consists of:

• a graphic user interface (GUI) for editing, compiling, config-
uring, executing, visualizing and steering the computation.

The GUI allows, by menu pops, to define the size of the CA,
the number of the processors on which the automaton must
be executed, and to choose the colors to be assigned to the
cell sub-states to support the graphical visualization of their
values;

• a software library to integrate raster GIS images into the CA.
The raster information can consist of different variables such
as altimetry, soil, temperature, vegetation, etc. In CAMELot
these variables are associated with the sub-states where
the transition function provides a dynamic alteration of the
information. For instance, the temperature values can be
changed by a simple model that updates the temperature with
regard to the hour of the day;

• a load balancing algorithm similar to the scatter decompo-
sition technique to evenly distribute the computation among
processors of the parallel machine;

• a language, called CARPET [7], which can be used to define
cellular algorithms and to perform steering commands when
complex space and time events are detected.

CARPET is a language to program cellular algorithms and
contains constructs to extend the range of interaction among
the cells, introducing the concept of region, and to define
algorithms to perform computational steering. It is a high-level
language based on C with additional constructs to describe the
rule of the state transition function of a single cell of a cellular
automaton and to steer the application. A CARPET program
is composed of a declaration part that appears only once in
the program and must precede any statement, a body program
that implements the transition function, and a steering part
that contains a set of commands to extract and analyze system
information and to perform steering.

Fig. 1 shows an example of application of these constructs.
Two 3D regions are defined in a three-dimensional cellular
automaton. The event expression checks whether the maximum
and the minimum of the rainfall sub-state in a region(zone1) are
equal. In case they are, the computation is stopped. If the sum
of the rainfall values in another region(zone2) is greater than a
threshold, then the value of the alpha parameter is changed. In
any case, the computation is stopped after 10 000 generations.

3. CAMELotGrid: An autonomic PSE

CAMELotGrid [8,6] is a PSE that provides a complete
integrated computing environment for CA programming,
permits one to specify the global criteria defining the autonomic
requirements of the application and to support the execution
of cellular applications over the Grid. It extends the original
CAMELot architecture for incorporating the features of self-
configuring, self-optimizing, self-healing, etc., of an autonomic
system, in order to realize a Grid-enabled middleware
architecture where the runtime autonomic management of the
application is done without any user intervention.

In CAMELotGrid a spatio-temporal problem can be
modeled by a 2D or 3D array of cells where each cell
represents a portion of a landscape. By CARPET a user can
describe, using the declaration, body and steering part, the
transition function that represents the cellular program of the



Download English Version:

https://daneshyari.com/en/article/426337

Download Persian Version:

https://daneshyari.com/article/426337

Daneshyari.com

https://daneshyari.com/en/article/426337
https://daneshyari.com/article/426337
https://daneshyari.com

