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Symbolic/numeric analysis of chaotic synchronization with a CAS
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Abstract

The synchronization of chaotic dynamical systems has received increased attention during the last few years, mostly because of its potential
applications to secure communications. However, the computational analysis of this issue is still a challenge. In this paper we perform a
symbolic/numeric analysis of the chaotic synchronization by using the Computer Algebra System (CAS) Mathematica.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, the use of coupled and synchronized systems
is quite standard in several fields, ranging from physical
systems [3,4] to computer science [2,14], etc. However, the
possibility of synchronizing chaotic systems is not so intuitive,
since these systems are very sensitive to small perturbations
on the initial conditions and, therefore, close orbits of the
system quickly become uncorrelated [15]. Surpringly, in 1990
it was shown that certain subsystems of chaotic systems can
be synchronized by linking them with common signals [16].
In particular, the authors reported the synchronization of
two identical (i.e., two copies of the same system with the
same parameter values) chaotic systems. They also showed that,
as the differences between those system parameters increase,
synchronization is lost. Since then, the synchronization of
chaotic systems has been extensively investigated both from the
theoretical [17] and the experimental [3,4] points of view. In
addition, some possible applications to various fields, such as
secure communications, have been discussed [4,5,10].

Although the theory of dynamical systems is not new, only
with the advent of the computers have we been able to simulate
those systems and to capture the subtle details of their otherwise
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unpredictable behavior. Because of the strong sensitivity to
initial conditions property, the numerical routines are very
prone to errors and cannot describe accurately and completely
the nonlinear nature of dynamical systems [9]. This makes the
computer algebra systems (CAS) – such as Mathematica or
Maple – indispensable tools in this field.

Some years ago, one of the authors published some work
on dynamical systems by using the CAS Mathematica [8].
The experience was very positive and convinced us that
Mathematica is a very convenient tool for these purposes. In
this paper, we perform a symbolic/numeric analysis of the
chaotic synchronization phenomena by using Mathematica.

2. Chaotic synchronization

We start our discussion by loading the package:

In[1]:=<<DynamicalSystems‘ChaosSynchronization‘

2.1. Pecora–Carroll scheme for chaotic synchronization

In 1990 Pecora and Carroll [16] showed that when
a state variable from a chaotic system is input into a
replica subsystem of the original one, both systems can
be synchronized identically. In mathematical terms, given a
couple of autonomous n-dimensional identical chaotic systems
ẋ1 = f (x1) and ẋ2 = f (x2) as the drive and response
systems respectively, the basic idea of the Pecora–Carroll (PC)
scheme is decomposing the drive system into two subsystems,
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ẋ1 = (u̇1, v̇1), with x1 ∈ Rn , u1 ∈ Rp and v1 ∈ Rq (where
n = p + q) as:

u̇1 = g(u1, v1)

v̇1 = h(u1, v1)

}
drive, (1)

and considering one of the decomposed subsystems as the
driving signal, say u1, to be injected into the response system:

v̇2 = h(u1, v2)} response, (2)

where u1 is the set of connecting variables. Note that the system
(1) is independent of the response system, whereas (2) is driven
by u1 (unidirectional coupling). The scheme given by Eqs. (1)
and (2) can be generalized by considering a response system
given by v̇2 = k(u1, v2), that is, by assuming that the functions
h and k describing the dynamics of v̇1 and v̇2 respectively
must not be the same. This situation is usually referred to as
heterogeneous (or inhomogeneous) driving.

To illustrate the PC synchronization method, we consider
the well-known Lorenz and Rössler systems, described
respectively by:x ′

= σ(y − x)

y′
= (r − z)x − y

z′
= xy − bz

and

x ′
= −y − z

y′
= x + ay

z′
= b + z(x − c).

Both can be efficiently represented in Mathematica as:

In[2]:=Lorenz[x ,y ,z ]:=
{σ (y-x),(r-z)x-y,x y-b z};

In[3]:=Rossler[x ,y ,z ]:= {-y-z,x+a y,b+z (x-c)};

Given a dynamical system and the list of its variables, the
Parameters command returns all the system parameters:

In[4]:=Parameters[#[x,y,z],{x,y,z}]& /@
{Lorenz,Rossler}

Out[4] := {{b, r, σ }, {a, b, c}}.

It is useful to write a dynamical system, X , as a linear
system by taking the first-order approximation, Ẋ = J (X).X ,
where the square matrix J (X) is called the Jacobian matrix
of the system. The JacobianMatrix command calculates the
Jacobian matrix of a dynamical system with respect to its list of
variables. For example:

In[5]:=JacobianMatrix[Lorenz[x,y,z],{x,y,z}]

Out[5] :=

 −σ σ 0
r − z −1 −x

y x −b

 .

With this system viewed as the transmitter or master system,
we introduce the drive signal y which can be used at the
receiver or slave system, to perform chaotic synchronization.
In other words, we apply the PC synchronization scheme
(1) and (2) of two Lorenz systems given by u1 = y1 and
v1 = (x1, z1). In order to determine if the synchronization
is achieved, we consider the Jacobian matrix of the error
dynamics between the slave and the master systems, the so-
called Jacobian Conditional Matrix (JCM). For a given input
including: (1) a dynamical system, (2) its list of variables, and
(3) a specific connection given by the driving variable/s, the

JCMatrix command returns the JCM of that connection. For
instance:

In[6]:=JCMatrix[Lorenz[x,y,z],{x,y,z},y]

Out[6] :=

(
−σ 0

y −b

)
.

It can be proved that the master and slave systems will
synchronize if the eigenvalues of the JCM are all negative [17].
In general, those eigenvalues depend not only on the given
dynamical system and the injected variable, but also on the
parameter values of the system:

In[7]:=Eigenvalues[%]
Out[7] := {−σ, −b}.

In their original paper, Pecora and Carroll considered the
parameter values:

In[8]:= param={b- > 8/3,r- > 60, σ - > 10};

which yield a chaotic behavior, as shown in Fig. 1 (left):

In[9]:= NDSolve[{x’[t]==σ*(y[t]-x[t]),x[0]==4,
y’[t]==(r-z[t])*x[t]-y[t],y[0]==1,
z’[t]==x[t]*y[t]-b*z[t],z[0]==30} /. param,
{x,y,z},{t,0,35},Method->ExplicitRungeKutta];

In[10]:= ParametricPlot3D[Evaluate[{x[t],y[t],
z[t]} /. %],
{t,0,35},PlotPoints->10000,PlotRange->All,
ViewPoint->{1.618,-2.849,0.845}];

Out[10] := See Fig. 1. (left).

Note that, for this choice of the system parameters, the
connection in variable y is synchronizing. On the contrary,
injecting variable x (i.e., taking u1 = x1 and v1 = (y1, z1)

in (1) and (2)) leads to the JCM:

In[11]:=JCMatrix[Lorenz[x,y,z],{x,y,z},x]

Out[11] :=

(
−1 −x
x −b

)
whose eigenvalues are:

In[12]:=Eigenvalues[%]

Out[12] :={
1
2

(
−b −

√
b2 − 2b − 4x2 + 1 − 1

)
,

1
2

(
−b +

√
b2 − 2b − 4x2 + 1 − 1

)}
.

Because the eigenvalues do depend on the system variables,
synchronization cannot be determined automatically. The
solution to this question is given by the Lyapunov exponents of
the difference system, since they indicate if small displacements
of trajectories are along stable or unstable directions. Lyapunov
exponents of the v2-subsystem for a particular drive trajectory
are called conditional Lyapunov exponents (CLE). If we are
looking for a stable subsystem, then all the exponents must
be negative so that the small perturbations will exponentially
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