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In a recent work, Girard proposed a new and innovative approach to computational 
complexity based on the proofs-as-programs correspondence. In a previous paper, the 
authors showed how Girard’s proposal succeeds in obtaining a new characterization of 
co-NL languages as a set of operators acting on a Hilbert Space. In this paper, we extend 
this work by showing that it is also possible to define a set of operators characterizing the 
class L of logarithmic space languages.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Linear logic and implicit computational complexity

Logic, and more precisely proof theory – the domain whose purpose is the formalization and study of mathematical 
proofs – recently yielded numerous developments in theoretical computer science. These developments are founded on a 
correspondence, often called Curry–Howard correspondence, between mathematical proofs and computer programs (usually 
formalized in lambda-calculus). The main interest of this correspondence lies in its dynamic nature: program execution 
corresponds to a procedure on mathematical proofs known as the cut-elimination procedure.

In the eighties, Jean-Yves Girard discovered linear logic through a study of mathematical models of the lambda-calculus. 
This logical system, as a direct consequence of this correspondence between proofs and programs, is particularly interesting 
from the point of view of the mathematical foundations of computer science for its resource-awareness. In particular, it gave 
birth to a number of developments in the field of implicit computational complexity, for instance through the definition 
and study of restricted logical systems (sub-systems of linear logic) in which the set of representable functions captures a 
complexity class. For instance, elementary linear logic (ELL) restricts the rules governing the use of exponential connectives 
– the connectives dealing with the duplication of the arguments of a function – and the set of representable functions in 
ELL is exactly the set of elementary time functions [3]. It was also shown [4] that a characterization of logarithmic space 
computation can be obtained if one restricts both the rules of exponential connectives and the use of universal quantifiers. 
Finally, a variation on the notion of linear logic proof nets succeeded in characterizing the classes NC of problems that can 
be efficiently parallelized [5].

✩ Work partially supported by the ANR projects ANR-10-BLAN-0213 LOGOI and ANR-08-BLAN-0211 COMPLICE.
E-mail addresses: aubert@lipn.fr (C. Aubert), seiller@ihes.fr (T. Seiller).

1 Current address: Appalachian State University, Boone, NC, USA.
2 Current address: Department of Computer Science, University of Copenhagen, Njalsgade 128 bygning 24, 2300 Køenhavn S, Denmark.

http://dx.doi.org/10.1016/j.ic.2014.01.018
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.01.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:aubert@lipn.fr
mailto:seiller@ihes.fr
http://dx.doi.org/10.1016/j.ic.2014.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.01.018&domain=pdf


C. Aubert, T. Seiller / Information and Computation 248 (2016) 2–21 3

1.2. Geometry of interaction

A deep study of the formalization of proofs in linear logic, in particular their formalization as proof nets, led Jean-Yves 
Girard to initiate a program entitled geometry of interaction (GoI) [6]. This program, in a first approximation, intends to 
define a semantics of proofs that accounts for the dynamics of the cut-elimination procedure. Through the correspondence 
between proofs and programs, this would define a semantics of programs that accounts for the dynamics of their execution. 
However, the geometry of interaction program is more ambitious: beyond the mere interpretation of proofs, its purpose is 
to completely reconstruct logic around the dynamics of the cut-elimination procedure. This means reconstructing the logic 
of programs, where the notion of formula – or type – accounts for the behavior of algorithms.

Informally, a geometry of interaction is defined by a set of paraproofs together with a notion of interaction, in the same 
way one defines strategies and their composition in game semantics. An important tool in the construction is a binary 
function that measures the interaction between two paraproofs. With this function one defines a notion of orthogonality 
that corresponds to the negation of logic and reconstructs the formulas as sets of paraproofs equal to the orthogonal of a 
given set of paraproofs: a formula is therefore a set of “programs” that interact in a similar way to a given set of tests.

Since the introduction of this program Jean-Yves Girard proposed different constructions to realize it. These constructions 
share the notion of paraproofs: operators in a von Neumann algebra. They however differ on the notion of orthogonality 
they use: in the first constructions, this notion was founded on the nilpotency of the product of two operators, while the 
more recent construction [7] uses Fuglede–Kadison determinant – a generalization of the usual determinant of matrices that 
can be defined in type II1 factors.

Since the reconstruction of logic is based on the notion of execution, geometry of interaction constructions are par-
ticularly interesting for the study of computational complexity. It is worth noting that the first construction of GoI [8]
allowed Abadi, Gonthier, and Lévy [9] to explain the optimal reduction of λ-calculus defined by Lamping [10]. This first GoI 
construction was also used to obtain results in the field of implicit computational complexity [11].

1.3. A new approach to complexity

Recently Jean-Yves Girard proposed a new approach for the study of complexity classes that was inspired by his latest 
construction of a geometry of interaction. Using the crossed product construction between a von Neumann algebra and a 
group acting on it, he proposed to characterize complexity classes as sets of operators obtained through the internalization 
of outer automorphisms of the type II1 hyperfinite factor. The authors showed in a recent paper [2] that this approach 
succeeds in defining a characterization of the set of co-NL languages as a set of operators in the type II1 hyperfinite factor. 
The proof of this result was obtained through the introduction of non-deterministic pointer machines, which are abstract 
machines designed to mimic the computational behavior of operators. The result was obtained by showing that a co-NL
complete problem could be solved by these machines.

In this paper, we extend these results in two ways. The first important contribution is that we give an alternative proof 
of the fact that co-NL is indeed characterized by non-deterministic pointer machines. This new proof consists in showing 
that pointer machines can simulate the well-known and studied two-way multi-head finite automata [12,13]. The second 
contribution of this paper consists in obtaining a characterization of the class L as a set of operators in the hyperfinite 
factor of type II1. By studying the set of operators that characterize the class co-NL and in particular the encoding of 
non-deterministic pointer machines as operators, we are able to show that the operators encoding a deterministic machine 
satisfy a condition expressed in terms of norm. We then manage to show that the language decided by an operator satisfying 
this norm condition is in the class L, showing that the set of all such operators characterizes L.

2. The basic picture

The construction uses an operator-theoretic construction known as the crossed product of an algebra by a group acting 
on it. The interested reader can find a quick overview of the theory of von Neumann algebras in the appendix of the second 
author’s work on geometry of interaction [14], and a brief presentation of the crossed product construction in the authors’ 
previous work [2] on the characterization of co-NL. For a more complete presentation of the theory of operators and the 
crossed product construction, we refer to the well-known series of Takesaki [15–17].

In a nutshell, the crossed product construction A �α G of a von Neumann algebra A and a group action α : G → Aut(A)

defines a von Neumann algebra containing A and unitaries that internalize the automorphisms α(g) for g ∈ G . For this, one 
considers the Hilbert space3 K = L2(G, H) where H is the Hilbert space A is acting on, and one defines two families of 
unitary operators4 in L(K):

3 The construction L2(G, H) is a generalization of the well-known construction of the Hilbert space of square-summable functions: in case G is considered 
with the discrete topology, the elements are functions f : G →H such that ∑g∈G ‖ f (g)‖2 < ∞.

4 Recall that in the algebra L(H) of bounded linear operators on the Hilbert space H (we denote by 〈·, ·〉 its inner product), there exists an anti-linear 
involution (·)∗ such that for any ξ, η ∈ H and A ∈ L(H), 〈Aξ, η〉 = 〈ξ, A∗η〉. This adjoint operator coincides with the conjugate-transpose in the algebras of 
square matrices. A unitary operator u is an operator such that uu∗ = u∗u = 1.
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