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Polynomial interpretations and their generalizations like quasi-interpretations have been 
used in the setting of first-order functional languages to design criteria ensuring statically 
some complexity bounds on programs [10]. This fits in the area of implicit computational 
complexity, which aims at giving machine-free characterizations of complexity classes. In 
this paper, we extend this approach to the higher-order setting. For that we consider 
simply-typed term rewriting systems [35], we define higher-order polynomial interpreta-
tions for them, and we give a criterion ensuring that a program can be executed in 
polynomial time. In order to obtain a criterion flexible enough to validate interesting 
programs using higher-order primitives, we introduce a notion of polynomial quasi-
interpretations, coupled with a simple termination criterion based on linear types and 
path-like orders.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of statically analyzing the performance of programs can be attacked in many different ways. One of them 
consists in verifying complexity properties early in the development cycle, when programs are still expressed in high-level 
languages, like functional or object-oriented idioms. And in this scenario, results from an area known as implicit compu-
tational complexity (ICC in the following) can be useful: often, they consist in characterizations of complexity classes in 
terms of paradigmatic programming languages (recursion schemes [30,8], λ-calculus [31], term rewriting systems [10], etc.) 
or logical systems (proof-nets, natural deduction, etc.), from which static analysis methodologies can be distilled. Examples 
are type systems, path-orderings and variations on the interpretation method. The challenge here is defining ICC systems 
which are not only simple, but also intensionally powerful: many natural programs among those with bounded complexity 
should be recognized as such by the ICC system, i.e., should actually be programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs are term rewriting systems (TRS in the 
following) [10,11], whose complexity can be kept under control by way of variations of the powerful techniques developed 
to check termination of TRSs, namely path orderings [20], dependency pairs [33] and the interpretation method [29]. Many 
different complexity classes have been characterized this way, from polynomial time to polynomial space, to exponential 
time to logarithmic space. And remarkably, many of the introduced characterizations are intensionally powerful, in particular 
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when the interpretation method is relaxed and coupled with recursive path orderings, like in quasi-interpretations [11]. 
These techniques can be fruitfully combined into concrete tools (see, e.g., [4]).

The cited results indeed represent the state-of-the art in complexity analysis for first-order functional programs, i.e. 
when functions are not first-class citizens. If the class of programs of interest includes higher-order functional programs, the 
techniques above can only be applied when programs are either defunctionalized or somehow put in first-order form, for 
example by applying a translation scheme due to the second author and Simone Martini [19]. However, it seems difficult to 
ensure in that case that the target first-order programs satisfy termination criteria such as those used in [11], although some 
promising results in this direction have been recently obtained [3]. The article [13] proposed to get around this problem 
by considering a notion of hierarchical union of TRSs, and showed that this technique allows to handle some examples of 
higher-order programs. This approach is interesting but it is not easy to assess its generality, besides particular examples. In 
the present work we want to switch to a higher-order interpretations setting, in order to provide a more abstract account 
of such situations.

We thus propose to generalize TRS techniques to systems of higher-order rewriting, which come in many different 
flavours [26,28,35]. The majority of the introduced higher-order generalizations of rewriting are quite powerful but also 
complex from a computational point of view, being conceived to model not only programs but also proofs involving quanti-
fiers. As an example, even computing the reduct of a term according to a reduction rule can in some cases be undecidable. 
Higher-order generalizations of TRS techniques [27,34], in turn, reflect the complexity of the languages on top of which they 
are defined. Summing up, devising ICC systems this way seems quite hard.

In this paper, we consider one of the simplest higher-order generalizations of TRSs, namely Yamada’s simply-typed term 
rewriting systems [35] (STTRSs in the following), we define a system of higher-order polynomial interpretations [34] for 
them and prove that, following [10], this allows to exactly characterize the class of polynomial time computable functions. 
We show, however, that this way the class of (higher-order) programs which can be given a polynomial interpretation does 
not include interesting and natural examples, like foldr, and that this problem can be overcome by switching to another 
technique, designed along the lines of quasi-interpretations [11]. This is the subject of sections 4 and 5, which also show 
how non-trivial examples can be proved polytime this way.

Another problem we address in this paper is related to the expressive power of simply-typed term rewriting systems. 
Despite their simplicity, simply-typed term rewriting systems subsume the simply-typed λ-calculus and extensions of it 
with full recursion, like PCF. This can be proved following [19] and is the subject of Section 3.

A preliminary version of this work appeared as a conference paper in [6]. Compared to this short version, the main 
contributions of the present paper are the following ones:

• detailed proofs of the results (several of them had to be omitted or only sketched in [6] because of space constraints);
• description of translations of typed λ-calculus and PCF into STTRS (Section 3);
• more examples of programs to which one can apply the complexity criterion of higher-order quasi-interpretations (Sec-

tion 5.6);
• discussion of embeddings of other ICC systems into our setting (Section 6).

2. Simply-typed term rewriting systems

2.1. Basic definitions and notation

We recall here the definition of a simply-typed term rewriting systems (STTRS), following [35,2]. We will actually con-
sider a subclass of STTRSs, basically the one of those STTRSs whose rules’ left hand side consists of a function symbol 
applied to a sequence of patterns. For first-order rewriting systems this corresponds to the notion of a constructor rewriting 
system.

We consider a denumerable set of base types, which we call data-types, that we denote with metavariables like D and E . 
Types are defined by the following grammar:

A, Ai ::= D
∣∣ A1 × · · · × An → A.

A functional type is a type which contains an occurrence of →. Some examples of base types are the type Wn of strings 
over an alphabet of n symbols, and the type NAT of tally integers.

We denote by F the set of function symbols (or just functions), C the set of constructors and X the set of variables. 
Constructors c ∈ C have a type of the form D1 × · · · × Dn → D , for n ≥ 0. For instance Wn has constructors empty of 
type Wn and c1, . . . , cn of type Wn → Wn . Functions f ∈ F , on the other hand, can themselves have any functional type. 
Variables x ∈X can have any type. Terms are typed and defined by the following grammar:

t, ti := xA
∣∣ cA

∣∣ fA
∣∣ (t A1×···×An→A t A1

1 . . . t An
n )A,

where xA ∈X , cA ∈ C , fA ∈F . We denote by T the set of all terms. Observe how application is primitive and is in general 
treated differently from other function symbols. This is what makes STTRSs different from ordinary TRSs. F V (t) is the set 
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