
Information and Computation 248 (2016) 82–103

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Two function algebras defining functions in NCk boolean 

circuits

Guillaume Bonfante a,1, Reinhard Kahle b,2, Jean-Yves Marion a,1, 
Isabel Oitavem b,2

a LORIA, BP239, 615, rue du jardin botanique, 54506 Villers-lès-Nancy, France
b CMA and DM, FCT-UNL, Monte de Caparica, 2829-516 Caparica, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2013
Available online 6 January 2016

Keywords:
Boolean circuits
NCk

Parallel computation class
Transducers

We describe the functions computed by boolean circuits in NCk by means of functions 
algebra for k ≥ 1 in the spirit of implicit computational complexity. The whole hierarchy 
defines NC. In other words, we give a recursion-theoretic characterization of the complexity 
classes NCk for k ≥ 1 without reference to a machine model, nor explicit bounds in the 
recursion schema. Actually, we give two equivalent descriptions of the classes NCk , k ≥ 1. 
One is based on a tree structure à la Leivant, the other is based on words. This latter 
puts into light the role of computation of pointers in circuit complexity. We show that 
transducers are a key concept for pointer evaluation.

© 2016 Elsevier Inc. All rights reserved.

The core of implicit computational complexity is to provide descriptions of complexity classes which are independent from 
the notion of time or of space related to the underlying machine’s definition. For instance, polynomial time complexity 
has been thoroughly examined under these terms considered Cobham–Edmonds’s thesis that polynomial time is the class 
of feasible functions (see [8,9,12]). Doing so, some of the key concept of implicit computational complexity have been 
introduced. For instance, Harold Simmons [22] justifies the equivalence of some recursive schema with primitive recursion. 
Daniel Leivant in [14], Stephen Cook and Steve Bellantoni in [3] brought to light the notion of ramification in recursion 
theory. Based on logics, there are two main directions: one is based on the Curry–Howard paradigm, see Girard’s Light 
Linear Logic [11], the other is known as Descriptive Complexity, illustrated by Immerman’s characterization of polynomial 
time (see [13]).

In this paper, we characterize functions computed by uniform boolean circuits of polylogarithmic depth and polynomial 
time. More specifically, we will describe precisely each layers of the hierarchy NCk for any k ≥ 1. This is, to our knowledge, 
the first exact characterization of each layer of the hierarchy by function algebra over infinite domains in implicit complexity. 
The classes NCk were firstly described based on circuits. NCk is the class of functions accepted by uniform boolean circuit 
families of depth O (logk(n)) and polynomial size with bounded fan-in gates, where n is the length of the input—see [1]
or [13]. In [20], Ruzzo identifies NCk with the classes of languages recognized by alternating Turing machines (in short 
ATMs) in time O (logk(n)) and space O (log(n)).

E-mail addresses: bonfante@loria.fr (G. Bonfante), kahle@mat.uc.pt (R. Kahle), jean-yves.marion@loria.fr (J.-Y. Marion), oitavem@fct.unl.pt (I. Oitavem).
1 The first and the third authors received the support of ANR Elica—ANR-14-CE25-0005.
2 The second author was partially supported by the Portuguese Science Foundation, FCT, through the projects Hilbert’s Legacy in the Philosophy of 

Mathematics, PTDC/FIL-FCI/109991/2009 and The Notion of Mathematical Proof, PTDC/MHC-FIL/5363/2012. The second and forth authors are also partially 
supported by FCT through the project Hilbert’s 24th Problem, PTDC/MHC-FIL/2583/2014 and through UID/MAT/00297/2013 (Centro de Matemática e Aplicações).

http://dx.doi.org/10.1016/j.ic.2015.12.009
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2015.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:bonfante@loria.fr
mailto:kahle@mat.uc.pt
mailto:jean-yves.marion@loria.fr
mailto:oitavem@fct.unl.pt
http://dx.doi.org/10.1016/j.ic.2015.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.12.009&domain=pdf


G. Bonfante et al. / Information and Computation 248 (2016) 82–103 83

Compared to say polynomial time Turing Machine, computations with uniform boolean circuits rely on a description 
of inputs by pointers3; moreover, the machine stores only such pointers (this is the space bound). The second ingredient 
is parallelism, which is reflected by a tree of computation of depth (poly-)logarithmic with respect to the inputs. We will 
propose two different solutions to cope with these features.

If one embeds words into well-balanced binary trees, one gets structurally a) trees of logarithmic depth with respect to 
the size of inputs, which—by means of a tiering mechanism—may serve as a basis for time iteration, b) any sub-term of the 
tree is a window on a sub-word of the input, that is a pointer on the input and c) structural induction on trees fits with the 
tree-like nature of alternating computing. Daniel Leivant gathered these three salient aspects in his description of NC by 
means of so-called ramified tree recurrence. His schema is parametrized by a number k and he proves RSRk ⊆ NCk ⊆ RSRk+2
for any k > 1, missing however the exact delineation of the hierarchy. His ideas have been reworked by Guillaume Bonfante, 
Reinhard Kahle, Jean-Yves Marion and Isabel Oitavem in [5] where mutual in place recursion (MIP) is introduced. An other 
source of inspiration of [5] was the description of NC1, that is ALOGTIME, by Daniel Leivant and Jean-Yves Marion [17].

Based on a variant of ramified recurrence, Steve Bloch characterized ALOGTIME in [4]. Ramified recurrence over trees 
was introduced by Daniel Leivant in [15], then reconsidered by Steve Bellantoni in [2] where he gives a characterization of 
alternating poly-log functions.

Using trees however leads to (at least) two issues. First, computations are done on well-balanced tree, thus not on a free 
algebra. Hence, we are not talking of an intrinsic property of the recursion schema, but on a property of the schema for 
some restricted subset of trees. Second, since trees serve both for inputs and pointers, the schema does not reveal the realm 
of pointer computations. For that reason, we provide a second description of the hierarchy based on two other recursion 
schema, one is called rational bitwise equations (RBE). This schema describes basic functions as a two step process: first, 
transducers connect some input bits together, second a finite map is applied on these latter bits. The key ingredient is 
that bits indices within inputs—in other words, pointers—are computed by transducers, thus involving a very weak form of 
induction. The second schema is time iteration, which corresponds to a ramified version of primitive recursion on pointers. 
Again, time iteration is performed on pointers. To sum up, the control of the computations in RBE only relies on pointers. 
Computations on data boils down to finite maps on the input alphabet.

Based on some word recurrence schema, we mention here the work of Clote on the class NC and the hierarchy which 
appeared in [7]. Compared to our proposition, Clote needs explicit bounds on the recursion schema, thus violating one 
of the “rules” of implicit computational complexity. Taking a view based on logics, boolean circuits where addressed by 
Immerman in terms of Descriptive Complexity, see for instance [13]. They have been considered by Mogbil et al. in [19].

The paper grew out of our earlier work [5]. Compared to it, we present and discuss some variations on the schema 
which we prove to be all equivalent. This shows that the schema is natural and robust. More importantly, we introduce a 
new schema, namely RBE , and we prove its equivalence with MIP. Our thesis is that this result enforces the definition of 
MIP, showing even more its robustness. Second point, the new recursion schema opens a new window on computation on 
pointers in implicit computational complexity.

In Section 1, we recall some facts concerning words, trees and finite state transducers. We present words and trees since 
we define algebras of functions on words and trees. Concerning finite state transducers, we use them for pointer computa-
tion. In Section 2, we present the Mutual In Place Recursion Schema and some variations on it. Together with a structural 
recursion schema and a parametrized schema k-TI, k ∈N, we define algebras of functions INCk . Each algebra INCk , for k ≥ 1, 
describes exactly functions in NCk . We come in Section 3 to Rational Bitwise Equations, a model of computations based on 
the separation between pointers computation and data computations. It is shown to be equivalent to the Mutual In Place 
schema. In order to describe all the layers of the hierarchy, we use a mechanism of strict ramification à la Leivant–Marion; 
again we provide a parametrized hierarchy of functions (RBEk)k∈N . Section 4 is devoted to the proof of Proposition 34, that 
is any function in NCk can be computed within INCk and Section 5 to the converse part, that is Proposition 36. Finally, 
Section 6 proves the equality RBEk = INCk for any k ≥ 0.

1. Preliminaries

Given some set X , we define P(X) = {U | U ⊆ X} of subsets of X . The set 1 is an arbitrary singleton set. It is clear that 
1 × X is isomorphic to X . Thus, a sequence λ indexed by 1 × X will be presented as (λx)x∈X .

As we will come back to it later, we recall that, given a semi-ring (A, 0, +, 1, ×) and two finite sets P and Q , a matrix 
of dimension P × Q on A is a table data m = (mp,q)(p,q)∈P×Q whose entries are in A. The set of such matrices is written 
A P×Q . Matrices of equal dimensions can be summed. Given m and n of dimension P × Q , m +n = (mp,q +np,q)p,q . Matrices 
are multiplied according to the usual rules. Given m = (mp,q)(p,q)∈P×Q and n = (nq,r)(q,r)∈Q ×R , we set m × n—of dimension 
P × R—defined by its components (m × n)p,r = ∑

q∈Q mp,q × nq,r .

Given a matrix m ∈ A P×Q , mp,q denotes the entry at position p, q. Sometimes, when indices become too heavy, the entry 
is denoted m[p, q].

To end with general notations, all along, sequences x1, . . . , xk are written �x when the context makes it clear.

3 As for Random Access Machines, a sequential model of computation.



Download English Version:

https://daneshyari.com/en/article/426380

Download Persian Version:

https://daneshyari.com/article/426380

Daneshyari.com

https://daneshyari.com/en/article/426380
https://daneshyari.com/article/426380
https://daneshyari.com

