
Information and Computation 240 (2015) 12–30

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Minimal indices for predecessor search ✩

Sarel Cohen ∗, Amos Fiat, Moshik Hershcovitch, Haim Kaplan

Tel-Aviv University, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2013
Available online 2 October 2014

Keywords:
Successor search
Predecessor search
Succinct data structures
Cell probe model
Fusion trees
Tries
Word RAM model

We give a new predecessor data structure which improves upon the index size of the
Pǎtraşcu–Thorup data structures, reducing the index size from O (nw4/5) bits to O (n log w)

bits, with optimal probe complexity. Alternatively, our new data structure can be viewed
as matching the space complexity of the (probe-suboptimal) z-fast trie of Belazzougui et
al. Thus, we get the best of both approaches with respect to both probe count and index
size. The penalty we pay is an extra O (log w) inter-register operations. Our data structure
can also be used to solve the weak prefix search problem, the index size of O (n log w) bits
is known to be optimal for any such data structure.
The technical contributions include highly efficient single word indices, with out-degree
w/ log w (compared to w1/5 of a fusion tree node). To construct these indices we device
highly efficient bit selectors which, we believe, are of independent interest.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental problem in data structures is the predecessor problem: given a RAM with w bit word operations, and
n keys (each w bits long), give a data structure that answers predecessor queries efficiently. We distinguish between the
space occupied by the n input keys themselves, which is O (nw) bits, and the additional space required by the data structure
which we call the index. The two other performance measures of the data structure which are of main interest are how many
accesses to memory (called probes) it performs per query, and the query time or the total number of machine operations
performed per query, which could be larger than the number of probes. We can further distinguish between probes to the
index and probes to the input keys themselves. The motivation is that if the index is small and fits in cache, probes to
the index would be cheaper. We focus on constructing a data structure for the predecessor problem that requires sublinear
o(nw) extra bits.

The simplest predecessor data structure is a sorted list, this requires no index, and performs O (log n) probes and O (log n)

operations per binary search. This high number of probes that are widely dispersed can makes this solution inefficient for
large data sets.

Fusion trees of Fredman and Willard [12] (see also [11]) reduce the number of probes and time to O (logw n). A fusion
tree node has outdegree B = w1/5 and therefore fusion trees require only O (nw/B) = O (nw4/5) extra bits. Variants of
fusion tree nodes with larger fanout (B = w1/3) appear in [17].

✩ Research was partially supported by the Israel Science Foundation grant no. 822-10 and the Israeli Centers of Research Excellence (I-CORE) program
(Center No. 4/11).

* Corresponding author.
E-mail addresses: sarelco@gmail.com (S. Cohen), fiat@tau.ac.il (A. Fiat), moshik1@gmail.com (M. Hershcovitch), haimk@cs.tau.ac.il (H. Kaplan).

http://dx.doi.org/10.1016/j.ic.2014.09.005
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:sarelco@gmail.com
mailto:fiat@tau.ac.il
mailto:moshik1@gmail.com
mailto:haimk@cs.tau.ac.il
http://dx.doi.org/10.1016/j.ic.2014.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.09.005&domain=pdf

S. Cohen et al. / Information and Computation 240 (2015) 12–30 13

Table 1
Requirements of various data structures for the predecessor problem. The word length is w and the number of keys is n. Indexing groups of w/ log w
consecutive keys with our new word indices we can reduce the space of any of the linear space data structures above to O (n log w) bits while keeping the
number of probes the same and increasing the query time by O (log w).

Data structure Ref. Index size (in bits) # Non-index probes Total # probes # operations

Binary search – O (logn) O (logn) O (#probes)
van Emde Boas [21] O (2w) O (1) O (log w) O (#probes)
x-fast trie [22] O (nw2) O (1) O (log w) O (#probes)
y-fast trie [22] O (nw) O (1) O (log w) O (#probes)
x-fast trie on “splitters”

poly(w) apart
Folklore O (n/poly(w)) O (log w) O (log w) O (#probes)

Fusion trees [12] O (nw4/5) O (1) O (
log n
log w) O (#probes)

Beame and Fich [3] Θ(n1+ε w) O (1) O (
log w

log log w) O (#probes)

Grossi et al. [13] Θ(n log w) +Θ(2c·w)

(c < 1 constant)
O (1) O (

log n
log w) O (#probes)

z-fast trie [4,6,5] O (n log w)
exp.
w.c.

O (1)
O (log n)

O (log w)
O (log n)

O (#probes)
Pǎtraşcu and Thorup [16] O (nw) or O (nw4/5) O (1) Optimal given linear space O (#probes)
Pǎtraşcu and

Thorup +γ -nodes
This paper O (n log w) O (1) Optimal given linear space O (#probes + log w)

Another predecessor data structure is the y-fast trie of Willard [22]. It requires linear space (O (nw) extra bits) and
O (log w) probes and time per query.

Grossi et al. (Lemma 3.3 in [13]) give a predecessor data structure that is highly efficient in space and number of probes –
given a large precomputed table (exponential in the word size) which can be shared amongst multiple predecessor data
structures.

Pǎtraşcu and Thorup [16] solve the predecessor problem optimally (to within an O (1) factor) for any possible point along
the probe count/space tradeoff, and for any value of n and w . However, they do not distinguish between the space required
to store the input and the extra space required for the index. They consider only the total space which cannot be sublinear.

Pǎtraşcu and Thorup’s linear space data structure for predecessor search is an improvement of three previous data-
structures and achieves the following bounds.

1. For values of n such that log n ∈ [0, log2 w
log log w] their data structure is a fusion tree and therefore the query time is

O (logw n). This bound increases monotonically with n.

2. For n such that log n ∈ [log2 w
log log w ,

√
w] their data structure is a generalization of the data structure of Beame and Fich [3]

that is suitable for linear space, and has the bound O (
log w

log log w−log log log n). This bound increases from O (
log w

log log w) at the
beginning of this range to O (log w) at the end of the range.

3. For values of n such that log n ∈ [√w, w] their data structure is a slight improvement of the van Emde Boas (vEB) data
structure [21] and has the bound of O (max{1, log(

w−log n
log w)}). This bound decreases with n from O (log w) to O (1).

The x-fast-trie [22] consists of a trie over the keys and a perfect hash table mapping the set of all prefixes of the n
w-bit keys to O (1) words containing the prefix and a pointer to the vertex in the trie associated with this prefix. Given
a query x, and using a binary search on the length of x (in every iteration we check if the corresponding prefix of x is
in the hash-table), we can find the longest common prefix (LCP) of x with any of the n keys. From the node in the trie
representing this longest common prefix there is a pointer to the successor or predecessor of x, and as the keys are stored
in a doubly-linked list we can go from one to the other. Since there are O (nw) prefixes in the hash-table, the size of this
data-structure is O (nw) words.

In y-fast-tries [22] space requirements are further reduced to O (n) w-bit words by choosing Θ(n
w) keys in the x-fast-trie

(approximately evenly spaced). A binary search tree is used to represent the keys between consecutive elements in the trie
(there are about O (w) of these). Both the x-fast trie and the y-fast tries perform predecessor/successor queries in O (log w)

time.
For detailed descriptions of the x-fast trie and y-fast trie see [22,3]
A recent data structure of Belazzougui et al. [4] called the probabilistic z-fast trie, reduces the extra space requirement to

O (n log w) bits, but requires a (suboptimal) expected O (log w) probes (and O (log n) probes in the worst case). See Table 1
for a detailed comparison between various data structures for the predecessor problem with respect to the space and probe
parameters under consideration.

Consider the following multilevel scheme to reduce index size: (a) partition the keys into consecutive sets of w1/5 keys,
(b) build a Fusion tree index structure for each such set (one w bit word), and (c) index the smallest key in every such
group using any linear space data structure. The number of fusion tree nodes that we need n/w1/5 and the total space
required for these nodes and the data structure that is indexing them is O (nw4/5).

Download English Version:

https://daneshyari.com/en/article/426418

Download Persian Version:

https://daneshyari.com/article/426418

Daneshyari.com

https://daneshyari.com/en/article/426418
https://daneshyari.com/article/426418
https://daneshyari.com

