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We give a new predecessor data structure which improves upon the index size of the 
Pǎtraşcu–Thorup data structures, reducing the index size from O (nw4/5) bits to O (n log w)

bits, with optimal probe complexity. Alternatively, our new data structure can be viewed 
as matching the space complexity of the (probe-suboptimal) z-fast trie of Belazzougui et 
al. Thus, we get the best of both approaches with respect to both probe count and index 
size. The penalty we pay is an extra O (log w) inter-register operations. Our data structure 
can also be used to solve the weak prefix search problem, the index size of O (n log w) bits 
is known to be optimal for any such data structure.
The technical contributions include highly efficient single word indices, with out-degree 
w/ log w (compared to w1/5 of a fusion tree node). To construct these indices we device 
highly efficient bit selectors which, we believe, are of independent interest.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental problem in data structures is the predecessor problem: given a RAM with w bit word operations, and 
n keys (each w bits long), give a data structure that answers predecessor queries efficiently. We distinguish between the 
space occupied by the n input keys themselves, which is O (nw) bits, and the additional space required by the data structure 
which we call the index. The two other performance measures of the data structure which are of main interest are how many 
accesses to memory (called probes) it performs per query, and the query time or the total number of machine operations 
performed per query, which could be larger than the number of probes. We can further distinguish between probes to the 
index and probes to the input keys themselves. The motivation is that if the index is small and fits in cache, probes to 
the index would be cheaper. We focus on constructing a data structure for the predecessor problem that requires sublinear 
o(nw) extra bits.

The simplest predecessor data structure is a sorted list, this requires no index, and performs O (log n) probes and O (log n)

operations per binary search. This high number of probes that are widely dispersed can makes this solution inefficient for 
large data sets.

Fusion trees of Fredman and Willard [12] (see also [11]) reduce the number of probes and time to O (logw n). A fusion 
tree node has outdegree B = w1/5 and therefore fusion trees require only O (nw/B) = O (nw4/5) extra bits. Variants of 
fusion tree nodes with larger fanout (B = w1/3) appear in [17].
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Table 1
Requirements of various data structures for the predecessor problem. The word length is w and the number of keys is n. Indexing groups of w/ log w
consecutive keys with our new word indices we can reduce the space of any of the linear space data structures above to O (n log w) bits while keeping the 
number of probes the same and increasing the query time by O (log w).

Data structure Ref. Index size (in bits) # Non-index probes Total # probes # operations

Binary search – O (logn) O (logn) O (#probes)
van Emde Boas [21] O (2w ) O (1) O (log w) O (#probes)
x-fast trie [22] O (nw2) O (1) O (log w) O (#probes)
y-fast trie [22] O (nw) O (1) O (log w) O (#probes)
x-fast trie on “splitters” 

poly(w) apart
Folklore O (n/poly(w)) O (log w) O (log w) O (#probes)

Fusion trees [12] O (nw4/5) O (1) O (
log n
log w ) O (#probes)

Beame and Fich [3] Θ(n1+ε w) O (1) O (
log w

log log w ) O (#probes)

Grossi et al. [13] Θ(n log w) +Θ(2c·w )

(c < 1 constant)
O (1) O (

log n
log w ) O (#probes)

z-fast trie [4,6,5] O (n log w)
exp.
w.c.

O (1)
O (log n)

O (log w)
O (log n)

O (#probes)
Pǎtraşcu and Thorup [16] O (nw) or O (nw4/5) O (1) Optimal given linear space O (#probes)
Pǎtraşcu and

Thorup +γ -nodes
This paper O (n log w) O (1) Optimal given linear space O (#probes + log w)

Another predecessor data structure is the y-fast trie of Willard [22]. It requires linear space (O (nw) extra bits) and 
O (log w) probes and time per query.

Grossi et al. (Lemma 3.3 in [13]) give a predecessor data structure that is highly efficient in space and number of probes – 
given a large precomputed table (exponential in the word size) which can be shared amongst multiple predecessor data 
structures.

Pǎtraşcu and Thorup [16] solve the predecessor problem optimally (to within an O (1) factor) for any possible point along 
the probe count/space tradeoff, and for any value of n and w . However, they do not distinguish between the space required 
to store the input and the extra space required for the index. They consider only the total space which cannot be sublinear.

Pǎtraşcu and Thorup’s linear space data structure for predecessor search is an improvement of three previous data-
structures and achieves the following bounds.

1. For values of n such that log n ∈ [0, log2 w
log log w ] their data structure is a fusion tree and therefore the query time is 

O (logw n). This bound increases monotonically with n.

2. For n such that log n ∈ [ log2 w
log log w , 

√
w] their data structure is a generalization of the data structure of Beame and Fich [3]

that is suitable for linear space, and has the bound O (
log w

log log w−log log log n ). This bound increases from O (
log w

log log w ) at the 
beginning of this range to O (log w) at the end of the range.

3. For values of n such that log n ∈ [√w, w] their data structure is a slight improvement of the van Emde Boas (vEB) data 
structure [21] and has the bound of O (max{1, log(

w−log n
log w )}). This bound decreases with n from O (log w) to O (1).

The x-fast-trie [22] consists of a trie over the keys and a perfect hash table mapping the set of all prefixes of the n
w-bit keys to O (1) words containing the prefix and a pointer to the vertex in the trie associated with this prefix. Given 
a query x, and using a binary search on the length of x (in every iteration we check if the corresponding prefix of x is 
in the hash-table), we can find the longest common prefix (LCP) of x with any of the n keys. From the node in the trie 
representing this longest common prefix there is a pointer to the successor or predecessor of x, and as the keys are stored 
in a doubly-linked list we can go from one to the other. Since there are O (nw) prefixes in the hash-table, the size of this 
data-structure is O (nw) words.

In y-fast-tries [22] space requirements are further reduced to O (n) w-bit words by choosing Θ( n
w ) keys in the x-fast-trie 

(approximately evenly spaced). A binary search tree is used to represent the keys between consecutive elements in the trie 
(there are about O (w) of these). Both the x-fast trie and the y-fast tries perform predecessor/successor queries in O (log w)

time.
For detailed descriptions of the x-fast trie and y-fast trie see [22,3]
A recent data structure of Belazzougui et al. [4] called the probabilistic z-fast trie, reduces the extra space requirement to 

O (n log w) bits, but requires a (suboptimal) expected O (log w) probes (and O (log n) probes in the worst case). See Table 1
for a detailed comparison between various data structures for the predecessor problem with respect to the space and probe 
parameters under consideration.

Consider the following multilevel scheme to reduce index size: (a) partition the keys into consecutive sets of w1/5 keys, 
(b) build a Fusion tree index structure for each such set (one w bit word), and (c) index the smallest key in every such 
group using any linear space data structure. The number of fusion tree nodes that we need n/w1/5 and the total space 
required for these nodes and the data structure that is indexing them is O (nw4/5).
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