
Information and Computation 240 (2015) 74–89

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Detecting regularities on grammar-compressed strings

Tomohiro I a,b,∗, Wataru Matsubara c, Kouji Shimohira a, Shunsuke Inenaga a,
Hideo Bannai a, Masayuki Takeda a, Kazuyuki Narisawa c, Ayumi Shinohara c

a Department of Informatics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
b Japan Society for the Promotion of Science (JSPS), Japan
c Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2013
Available online 7 October 2014

Keywords:
Straight-line programs (SLPs)
Runs
Squares
Gapped palindromes
Compressed string processing algorithms

We address the problems of detecting and counting various forms of regularities in a string
represented as a straight-line program (SLP) which is essentially a context free grammar in
the Chomsky normal form. Given an SLP of size n that represents a string s of length N ,
our algorithm computes all runs and squares in s in O (n3h) time and O (n2) space, where
h is the height of the derivation tree of the SLP. We also show an algorithm to compute
all gapped-palindromes in O (n3h + gnh log N) time and O (n2) space, where g is the length
of the gap. As one of the main components of the above solution, we propose a new
technique called approximate doubling which seems to be a useful tool for a wide range
of algorithms on SLPs. Indeed, we show that the technique can be used to compute the
periods and covers of the string in O (n2h) time and O (nh(n + log2 N)) time, respectively.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Finding regularities such as squares, runs, and palindromes in strings, is a fundamental and important problem in
stringology with various applications, and many efficient algorithms have been proposed (e.g., [14,6,1,8,15,2,11,10]). See
also [5] for a survey.

In this paper, we consider the problem of detecting regularities in a string s of length N that is given in a compressed
form, namely, as a straight-line program (SLP), which is essentially a context free grammar in the Chomsky normal form
that derives only s. Our model of computation is the word RAM: We shall assume that the computer word size is at least
�log2 N�, and hence, standard operations on values representing lengths and positions of string s can be performed in
constant time. Space complexities will be determined by the number of computer words (not bits).

Given an SLP whose size is n and the height of its derivation tree is h, Bannai et al. [3] showed how to test whether the
string s is square-free or not, in O (n3h log N) time and O (n2) space. Independently, Khvorost [9] presented an algorithm
for computing a compact representation of all squares in s in O (n3h log2 N) time and O (n2) space. Matsubara et al. [16]
showed that a compact representation of all maximal palindromes occurring in the string s can be computed in O (n3h)

time and O (n2) space. Note that the length N of the decompressed string s can be as large as O (2n) in the worst case.
Therefore, in such cases these algorithms are more efficient than any algorithm that works on uncompressed strings.

* Corresponding author at: Department of Computer Science, Technische Universität Dortmund, 44221 Dortmund, Germany.
E-mail addresses: tomohiro.i@cs.tu-dortmund.ge (T. I), tomohiro.i@inf.kyushu-u.ac.jp (T. I), inenaga@inf.kyushu-u.ac.jp (S. Inenaga),

bannai@inf.kyushu-u.ac.jp (H. Bannai), takeda@inf.kyushu-u.ac.jp (M. Takeda), narisawa@ecei.tohoku.ac.jp (K. Narisawa), ayumi@ecei.tohoku.ac.jp
(A. Shinohara).

http://dx.doi.org/10.1016/j.ic.2014.09.009
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.09.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:tomohiro.i@cs.tu-dortmund.ge
mailto:tomohiro.i@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
mailto:takeda@inf.kyushu-u.ac.jp
mailto:narisawa@ecei.tohoku.ac.jp
mailto:ayumi@ecei.tohoku.ac.jp
http://dx.doi.org/10.1016/j.ic.2014.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.09.009&domain=pdf

T. I et al. / Information and Computation 240 (2015) 74–89 75

In this paper we present the following extension and improvements to the above work, namely,

1. an O (n3h)-time O (n2)-space algorithm for computing a compact representation of squares and runs;
2. an O (n3h + gnh log N)-time O (n2)-space algorithm for computing a compact representation of palindromes with a gap

(spacer) of length g .

We remark that our algorithms can easily be extended to count the number of squares, runs, and gapped palindromes in
the same time and space complexities.

Note that Result 1 improves on the work by Khvorost [9] which requires O (n3h log2 N) time and O (n2) space. The key
to the improvement is our new technique of Section 3.3 called approximate doubling, which we believe is of independent
interest. An integer p (1 ≤ p < |s|) is called a period of string s if s = xkx′ such that x is of length p and x′ is a proper prefix
of p. Also, an integer c (1 ≤ c < |s|) is called a cover of string s if every position of s is covered by an occurrence of the
prefix y of s of length c. Using the approximate doubling technique, one can improve the time complexity of the algorithms
of Lifshits [12] to compute the periods and covers of a string given as an SLP from O (n2h log N) and O (n2h log2 N) to O (n2h)

and O (nh(n + log2 N)), respectively.
If we allow no gaps in palindromes (i.e., if we set g = 0), then Result 2 implies that we can compute a compact repre-

sentation of all maximal palindromes in O (n3h) time and O (n2) space. Hence, Result 2 can be seen as a generalization of
the work by Matsubara et al. [16] with the same efficiency.

2. Preliminaries

2.1. Strings

Let Σ be the alphabet. An element of Σ∗ is called a string. For string s = xyz, x is called a prefix, y is called a substring,
and z is called a suffix of s, respectively. The length of string s is denoted by |s|. The empty string ε is a string of length 0,
that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. For 1 ≤ i ≤ |s|, s[i] denotes the i-th character of s. For 1 ≤ i ≤ j ≤ |s|, s[i.. j] denotes the
substring of s that begins at position i and ends at position j. For any string s, let sR denote the reversed string of s, that
is, sR = s[|s|] · · · s[2]s[1]. For any strings s and u, let lcp(s, u) (resp. lcs(s, u)) denote the length of the longest common prefix
(resp. suffix) of s and u. For a pair of integers b ≤ e, [b, e] = {b, b + 1, . . . , e} is called an interval.

We say that string s has a period c (0 < c ≤ |s|) if s[i] = s[i + c] for any 1 ≤ i ≤ |s| − c. For a period c of s, we denote
s = uq , where u is the prefix of s of length c and q = |s|

c . If q ≥ 2, s = uq is called a repetition with root u and period |u|.
Also, we say that s is primitive if there is no string u and integer k > 1 such that s = uk . If s is primitive, then s2 is called a
square.

We denote a repetition in a string s by a triple 〈b, e, c〉 such that s[b..e] is a repetition with period c. A repetition 〈b, e, c〉
in s is called a run (or maximal periodicity in [13]) if c is the smallest period of s[b..e] and the substring cannot be extended
to the left nor to the right with the same period, namely neither s[b −1..e] nor s[b..e +1] has period c. Since the maximality
is essential for runs, in this paper, we refer [b − 1, e + 1] as the margined-interval of a run 〈b, e, c〉 in s, which is the minimal
interval where we can see the maximality of the run. Note that for any run 〈b, e, c〉 in s, every substring of length 2c in
s[b..e] is a square. Let Runs(s) denote the set of all runs in s.

A string s is said to be a palindrome if s = sR . A string s is said to be a gapped palindrome if s = xuxR for some strings
u ∈ Σ∗ and x ∈ Σ+ . Note that u may or may not be a palindrome. The prefix x (resp. suffix xR) of xuxR is called the left
arm (resp. right arm) of gapped palindrome xuxR . If |u| = g , then xuxR is said to be a g-gapped palindrome. We denote a
maximal g-gapped palindrome in a string s by a pair 〈b, e〉g such that s[b..e] is a g-gapped palindrome and s[b − 1..e + 1] is
not. Similarly to the case of runs, [b − 1, e + 1] is said to be the margined-interval of the maximal g-gapped palindrome. Let
gPals(s) denote the set of all maximal g-gapped palindromes in s.

Given a text string s ∈ Σ+ and a pattern string p ∈ Σ+ , we say that p occurs at position i (1 ≤ i ≤ |s| − |p| + 1) iff
s[i..i + |p| − 1] = p. Let Occ(s, p) denote the set of positions where p occurs in s.

Lemma 1. (See [17].) For any strings s, p ∈ Σ+ and any interval [b, e] with 1 ≤ b ≤ e ≤ b + |p|, Occ(s, p) ∩ [b, e] forms a single
arithmetic progression if Occ(s, p) ∩ [b, e] �= ∅.

We refer to an arithmetic progression representing Occ(s, p) ∩ [b, e] with 1 ≤ b ≤ e ≤ b + |p| as a serial-ap of p.

2.2. Straight-line programs

A straight-line program (SLP) S of size n is a set of productions S = {Xi → expri}n
i=1, where each Xi is a distinct variable

and each expri is either expri = X� Xr (1 ≤ �, r < i), or expri = a for some a ∈ Σ . Note that Xn derives a single string and,
therefore, we view the SLP as a compressed representation of the string s that is derived from the variable Xn . Recall that
the length N of the string s is O (2n) and in some instances N = Θ(2n). However, it is always the case that n ≥ log N . For any
variable Xi , let val(Xi) denote the string that is derived from variable Xi . Therefore, val(Xn) = s. When it is not confusing,
we identify Xi with the string represented by Xi .

Download English Version:

https://daneshyari.com/en/article/426422

Download Persian Version:

https://daneshyari.com/article/426422

Daneshyari.com

https://daneshyari.com/en/article/426422
https://daneshyari.com/article/426422
https://daneshyari.com

