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1. Introduction

There is a close connection between words and monadic second-order (MSO) logic. Biichi and Elgot proved for finite
words that MSO-formulas correspond exactly to regular languages. This relationship was developed for other classes of
labeled graphs; trees or infinite words enjoy a similar connection. See [1,2] for a survey of existing results. Colorings of
the entire plane, i.e. tilings, represent a natural generalization of biinfinite words to higher dimensions, and as such enjoy
similar properties. We plan to study in this paper tilings for the point of view of monadic second-order logic.

From a computer science point of view, tilings and more generally subshifts are the underlying objects of several com-
puting models including cellular automata [3-5], Wang tiles [6,7] and self-assembly tilings [8,9]. Following the recent trend
to better understand such ‘natural computing models’, one of the motivations of the present paper is to extend towards
these models the fruitful links established between languages of finite words and MSO logic.

Tilings and logic have a shared history. The introduction of tilings can be traced back to Hao Wang [10], who introduced
his celebrated tiles to study the (un)decidability of the V3V fragment of first-order logic. The undecidability of the domino
problem by his PhD student Berger [11] lead then to the undecidability of this fragment [12]. Seese [13,14] used the
domino problem to prove that graphs with a decidable MSO theory have a bounded tree width. Makowsky [15,16] used the
construction by Robinson [17] to give the first example of a finitely axiomatizable theory that is super-stable. More recently,
Oger [18] gave generalizations of classical results on tilings to locally finite relational structures. See the survey [19] for
more details.

Previously, a finite variant of tilings, called tiling pictures, was studied [20,21]. Tiling pictures correspond to colorings
of a finite region of the plane, this region being bordered by special ‘#’ symbols. It is proven for this particular model
that language recognized by EMSO-formulas corresponds exactly to so-called finite tiling systems, i.e. projections of finite
tilings.
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Fig. 1. Two configurations.

Fig. 2. A pattern P. P appears in M but presumably not in N.

The equivalent of finite tiling systems for infinite pictures are so-called sofic subshifts [22]. A sofic subshift represents
intuitively local properties and ensures that every point of the plane behaves in the same way. As a consequence, there is
no general way to enforce that some specific color, say A, appears at least once. Hence, some simple first-order existential
formulas have no equivalent as sofic subshift (and even subshift). This is where the border of # for finite pictures plays
an important role: Without such a border, results on finite pictures would also stumble on this issue. See [23] for similar
results on finite pictures without borders.

We deal primarily in this article with subshifts. See [24] for other acceptance conditions (what we called subshifts of
finite type correspond to A-acceptance in this paper).

Finally, note that all decision problems in our context are non-trivial: To decide if a universal first-order formula is
satisfiable (the domino problem, presented earlier) is not recursive. Worse, it is 211 -hard to decide if a tiling of the plane
exists where some given color appears infinitely often [25,24]. As a consequence, the satisfiability of MSO-formulas is at
least X]-hard.

In this paper, we will prove how various classes of formula correspond to well-known classes of subshifts. Some of the
results of this paper were already presented in [26].

2. Symbolic spaces and logic
2.1. Configurations

Consider the discrete lattice Z2. For any finite set Q, a Q -configuration is a function from Z? to Q. Q may be seen as
a set of colors or states. An element of Z? will be called a cell. A configuration will usually be denoted C, M or N.

Fig. 1 shows an example of two different configurations of Z? over a set Q of 5 colors. As a configuration is infinite, only
a finite fragment of the configurations is represented in the figure. We choose not to represent which cell of the picture is
the origin (0, 0). This will indeed be of no importance as we use only translation invariant properties.

For any z € Z? we denote by o, the shift map of vector z, i.e. the function from Q -configurations to Q -configurations
such that for all C € Q%°:

V7 e 72, 0:(0)(Z)=C(Z - 2)
A pattern is a partial configuration. A pattern P: X — Q where X C Z2 occurs in C € QZZ at position zq if

Vze X,C(zo+2) = P(2)

We say that P occurs in C if it occurs at some position in C. As an example the pattern P of Fig. 2 occurs in the configura-
tion M but not in N (or more accurately not on the finite fragment of N depicted in the figure). A finite pattern is a partial
configuration of finite domain. All patterns in the following will be finite. The language L£(C) of a configuration C is the set
of finite patterns that occur in C. We naturally extend this notion to sets of configurations.

A subshift is a natural concept that captures both the notion of uniformity and locality: the only description “available”
from a configuration C is the finite patterns it contains, that is £(C). Given a set F of patterns, let X be the set of all
configurations where no patterns of F occur.
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