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Abstract interpretation techniques are used to derive a control-flow analysis for a simple
higher-order functional language. The analysis approximates the interprocedural control-
flow of both function calls and returns in the presence of first-class functions and
tail-call optimization. In addition to an abstract environment, the analysis computes for
each expression an abstract call-stack, effectively approximating where function calls
return. The analysis is systematically derived by abstract interpretation of the stack-
based Ca E K abstract machine of Flanagan et al. using a series of Galois connections.
We prove that the analysis is equivalent to an analysis obtained by first transforming
the program into continuation-passing style and then performing control flow analysis
of the transformed program. We then show how the analysis induces an equivalent
constraint-based formulation, thereby providing a rational reconstruction of a constraint-
based CFA from abstract interpretation principles.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Control-flow analysis (CFA) of functional programs is concerned with determining how the program’s functions call each
other. In the case of the lambda calculus, this amounts to computing the flow of lambda expressions in order to determine
what functions are effectively called in an application (e1 e2). The result of a CFA can be visualized as an oriented control
flow graph (CFG) linking sub-expression ei to sub-expression e j if evaluation of ei may entail the immediate evaluation of e j .
A CFA computes an approximation of the actual behaviour of the program and can be more or less accurate depending on
the technique employed.

In his seminal work, Jones [1,2] proposed to use program analysis techniques to statically approximate the flow of
lambda-expressions under both call-by-value and call-by-name evaluation in the lambda calculus. Since then CFA has been
the subject of an immense research effort [3–6]—see the recent survey by Midtgaard [7] for a complete list. CFA has been
expressed using a variety of formalisms including data flow equations, type systems and constraint-based analysis. Surpris-
ingly, nobody has employed Cousot’s programme of calculational abstract interpretation [8] in which a program analysis is
calculated by systematically applying abstraction functions to a formal programming language semantics. The purpose of
this article is to show that such a derivation is indeed feasible and that a number of advantages follow from taking this
approach:
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• The systematic derivation of a CFA for a higher-order functional language from a well-known operational semantics
provides the resulting analysis with strong mathematical foundations. Its correctness follows directly from the general
theorems of abstract interpretation.

• The approach is easily adapted to different variants of the source language. We demonstrate this by deriving a CFA for
functional programs written in continuation-passing style.

• The common framework of these analyses enables their comparison. We take advantage of this to settle a question
about the equivalence between the analysis of programs in direct and continuation-passing style.

• The resulting equations can be given an equivalent constraint-based presentation, providing ipso facto a rational recon-
struction and a correctness proof of constraint-based CFA.

The article is organized as follows. Section 2 provides a concise enumeration of fundamental notions from abstract inter-
pretation used in the rest of the article. In Section 3 we define the language of study (the lambda calculus in administrative
normal form) and its semantics, and give an example of CFA of programs written in this language. Sections 4 and 5 contain
the derivation of a 0-CFA from an operational semantics: the Ca E K machine of Flanagan et al. [9]. In Section 4 we define a
series of Galois connections that each specifies one aspect of the abstraction in the analysis. In Section 5 we calculate the
analysis as the result of composing the collecting semantics induced by the abstract machine with these Galois connections.
Section 6 uses the same technical machinery to derive a CFA for a language in continuation-passing style and sets up a re-
lation between the two abstract domains that enables to prove a lock-step equivalence of the analysis of programs in direct
style and the CPS analysis of their CPS counterparts. In Section 7 we show how the recursive equations defining the CFA of
a program induce an equivalent formulation of the analysis, where the result of the analysis now is expressed as a solution
to a set of constraints. Section 8 compares with related approaches and Section 9 concludes.

Preliminary versions of the results reported in this article were published at SAS 2008 [10] and ICFP 2009 [11].
The present article is a revised version of the latter paper, extending the lock-step relation between the direct and
continuation-passing style analyses to include integer constants. The paper has furthermore been expanded with proofs
and details of derivations of the abstract interpretations.

2. Abstract interpretation

This section recalls basic notions of lattice theory and abstract interpretation [12–16] on which we base our develop-
ments in the subsequent sections. In particular, we introduce the notion of Galois connections and provide a list of known
Galois connections that will be used to design the abstraction underlying the CFA developed in Section 4.

A partially ordered set (poset) 〈S;�〉 is a set S equipped with a partial order �. A complete lattice is a poset
〈C;�,⊥,�,�,	〉, such that the least upper bound �S and the greatest lower bound 	S exist for every subset S of C .
⊥ = 	C denotes the infimum of C and � = �C denotes the supremum of C . The set of total functions D → C , whose
codomain is a complete lattice 〈C;�,⊥,�,�,	〉, is itself a complete lattice 〈D → C; �̇, ⊥̇, �̇, �̇, 	̇〉 under the pointwise
ordering f �̇ f ′ ⇔ ∀x. f (x)� f ′(x), and with bottom, top, join, and meet extended similarly. The powersets ℘(S) of a set S
ordered by set inclusion is a complete lattice 〈℘(S);⊆,∅, S,∪,∩〉.

2.1. Galois connections

A Galois connection is a pair of functions α, γ between two posets 〈C;�〉 and 〈A;�〉 such that for all a ∈ A, c ∈ C :
α(c) � a ⇔ c � γ (a). Equivalently a Galois connection can be defined as a pair of functions satisfying:

(a) α and γ are monotone.
(b) α � γ is reductive (for all a ∈ A: α � γ (a) � a).
(c) γ � α is extensive (for all c ∈ C : c � γ � α(c)).

Galois connections are typeset as 〈C;�〉 γ

α
〈A;�〉. We omit the orderings when they are clear from the context.

For a Galois connection between two complete lattices 〈C;�,⊥c,�c,�,	〉 and 〈A;�,⊥a,�a,∨,∧〉, α is a complete
join-morphism (CJM) (for all Sc ⊆ C : α(�Sc) = ∨α(Sc) = ∨{α(c) | c ∈ Sc}) and γ is a complete meet morphism (for

all Sa ⊆ A: γ (∧Sa) = 	γ (Sa) = 	{γ (a) | a ∈ Sa}). The composition of two Galois connections 〈C;�〉 γ1

α1
〈B;⊆〉 and

〈B;⊆〉 γ2

α2
〈A;�〉 is itself a Galois connection 〈C;�〉 γ1�γ2

α2�α1
〈A;�〉. Galois connections in which α is surjective (or

equivalently γ is injective) are typeset as: 〈C;�〉 γ

α
〈A;�〉. Galois connections in which γ is surjective (or equivalently

α is injective) are typeset as: 〈C;�〉 γ

α
〈A;�〉. When both α and γ are surjective, the two domains are isomorphic.

The following Galois connections will be used in the article:
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