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The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1} is the minimum 
degree of a real polynomial that approximates f to within error ε in the �∞ norm. 
We prove several lower bounds on this important complexity measure by explicitly 
constructing solutions to the dual of an appropriate linear program. Our first result resolves 
the ε-approximate degree of the two-level AND–OR tree for any constant ε > 0. We 
show that this quantity is Θ(

√
n), closing a line of incrementally larger lower bounds. 

The same lower bound was recently obtained independently by Sherstov (Theory Comput. 
2013) using related techniques. Our second result gives an explicit dual polynomial that 
witnesses a tight lower bound for the approximate degree of any symmetric Boolean 
function, addressing a question of Špalek (2008). Our final contribution is to reprove several 
Markov-type inequalities from approximation theory by constructing explicit dual solutions 
to natural linear programs. These inequalities underly the proofs of many of the best-
known approximate degree lower bounds, and have important uses throughout theoretical 
computer science.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Approximate degree is an important measure of the complexity of a Boolean function. It captures whether a function can 
be approximated by a low-degree polynomial with real coefficients in the �∞ norm, and it has diverse applications in the-
oretical computer science. For instance, lower bounds on approximate degree underly fundamental circuit complexity lower 
bounds [25,7,36] and oracle separations between complexity classes [8]. In quantum computing, many tight lower bounds 
on quantum query complexity have been proved via lower bounds on approximate degree [2,19,5]. Approximate degree 
lower bounds have also found important uses in communication complexity [39,22,13,42,10,41,38], enabling the resolution 
of long-standing open problems regarding both randomized and quantum formulations of bounded-error, small-bias, and 
multiparty communication. Meanwhile, upper bounds on approximate degree have had several important algorithmic uses. 
For instance, in computational learning theory, approximate degree upper bounds underly the best known algorithms for 
PAC learning DNF and read-once formulas, and agnostically learning disjunctions [20,3,18].
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In this paper, we seek to advance our understanding of this fundamental complexity measure. We focus on proving ap-
proximate degree lower bounds by specifying explicit dual polynomials, which are dual solutions to a certain linear program 
capturing the approximate degree of any function. These polynomials act as certificates of the high approximate degree 
of a function, and their construction is of interest because these dual objects have been used recently to resolve several 
long-standing open problems in communication complexity (e.g. [39,22,13,42,10,41]). See the survey of Sherstov [34] for an 
excellent overview of this body of literature.

Our contributions Our first result resolves the approximate degree of the function f (x) = ∧ N
i=1

∨ N
j=1xij , showing this quan-

tity is Θ(N). Known as the two-level AND–OR tree, f is perhaps the simplest function whose approximate degree was not 
previously characterized. A series of works spanning nearly two decades proved incrementally larger lower bounds on the 
approximate degree of this function, and this question was recently re-posed by Aaronson in a tutorial at FOCS 2008 [1]. 
Our proof not only yields a tight lower bound, but it specifies an explicit dual polynomial for the high approximate degree 
of f , answering a question of Špalek [42] in the affirmative.

Our second result gives an explicit dual polynomial witnessing the high approximate degree of any symmetric Boolean 
function, recovering a well-known result of Paturi [28]. Our solution builds on work of Špalek [42], who gave an explicit 
dual polynomial for the OR function, and addresses an open question from that work.

Our final contribution is to reprove several classical Markov-type inequalities from approximation theory. These inequal-
ities bound the derivative of a polynomial in terms of its degree. Combined with the well-known symmetrization technique 
(see e.g. [25,1]), Markov-type inequalities have traditionally been the primary tool used to prove approximate degree lower 
bounds on Boolean functions (e.g. [2,4,26,40]). Our proofs of these inequalities specify explicit dual solutions to a natural 
linear program (that differs from the one used to prove our first two results). While these inequalities have been known for 
over a century [9,23,24], to the best of our knowledge our proof technique is novel, and we believe it sheds new light on 
these results.

2. Preliminaries

We work with Boolean functions f : {−1, 1}n → {−1, 1} under the standard convention that 1 corresponds to logical 
false, and −1 corresponds to logical true. We let ‖ f ‖∞ = maxx∈{−1,1}n | f (x)| denote the �∞ norm of f . The ε-approximate 
degree of a function f : {−1, 1}n → {−1, 1}, denoted degε( f ), is the minimum (total) degree of any real polynomial p such 
that ‖p − f ‖∞ ≤ ε, i.e., |p(x) − f (x)| ≤ ε for all x ∈ {−1, 1}n . We use d̃eg( f ) to denote deg1/3( f ), and use this to refer to 
the approximate degree of a function without qualification. The choice of 1/3 is arbitrary, as d̃eg( f ) is related to degε( f )
by a constant factor for any constant ε ∈ (0, 1). We let ORn and ANDn denote the OR function and AND function on n
variables respectively, and we let 1n ∈ {−1, 1}n denotes the n-dimensional all-ones vector. Define s̃gn(x) = −1 if x < 0 and 
1 otherwise.

In addition to approximate degree, block sensitivity is also an important measure of the complexity of a Boolean function. 
We introduce this measure because functions with low block sensitivity are an “easy case” in the analysis of Theorem 2
below. The block sensitivity bsx( f ) of a Boolean function f : {−1, 1}n → {−1, 1} at the point x is the maximum number of 
pairwise disjoint subsets S1, S2, S3, · · · ⊆ {1, 2, . . . , n} such that f (x) 
= f (xS1 ) = f (xS2 ) = f (xS3 ) = . . . . Here, xS denotes the 
vector obtained from x by negating each entry whose index is in S . The block sensitivity bs( f ) of f is the maximum of 
bsx( f ) over all x ∈ {−1, 1}n .

2.1. A dual characterization of approximate degree

For a subset S ⊆ {1, . . . , n} and x ∈ {−1, 1}n , let χS (x) = ∏
i∈S xi . Given a Boolean function f , let p(x) = ∑

|S|≤d cSχS (x)
be a polynomial of degree d that minimizes ‖p − f ‖∞ , where the coefficients cS are real numbers. Then p is an optimum 
of the following linear program.

min ε
such that | f (x) −∑

|S|≤d cSχS(x)| ≤ ε for each x ∈ {−1,1}n

cS ∈R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x) f (x)
such that

∑
x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d

φ(x) ∈R for each x ∈ {−1,1}n
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