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We present a number of exponential-time algorithms for problems in sparse matrices and 
graphs of bounded average degree. First, we obtain a simple algorithm that computes a 
permanent of an n ×n matrix over an arbitrary commutative ring with at most dn non-zero 
entries using O�(2(1−1/(3.55d))n) time and ring operations,1 improving and simplifying the 
recent result of Izumi and Wadayama [FOCS 2012].
Second, we present a simple algorithm for counting perfect matchings in an n-vertex graph 
in O�(2n/2) time and polynomial space; our algorithm matches the complexity bounds of 
the algorithm of Björklund [SODA 2012], but relies on inclusion–exclusion principle instead 
of algebraic transformations.
Third, we show a combinatorial lemma that bounds the number of “Hamiltonian-like” 
structures in a graph of bounded average degree. Using this result, we show that

1. a minimum weight Hamiltonian cycle in an n-vertex graph with average degree 
bounded by d can be found in O�(2(1−εd)n) time and exponential space for a constant 
εd depending only on d;

2. the number of perfect matchings in an n-vertex graph with average degree bounded 
by d can be computed in O�(2(1−ε′

d)n/2) time and exponential space, for a constant ε′
d

depending only on d.

The algorithm for minimum weight Hamiltonian cycle generalizes the recent results of 
Björklund et al. [TALG 2012] on graphs of bounded degree.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Improving upon the 50-year-old O�(2n)-time dynamic programming algorithms for the Traveling Salesman Problem by 
Bellman [1] and Held and Karp [2] is a major open problem in the field of exponential-time algorithms [3]. A similar 
situation appears when we want to count perfect matchings in a graph: a half-century old O�(2n/2)-time algorithm of 
Ryser for bipartite graphs [4] has only recently been transferred to arbitrary graphs [5], and breaking these time complexity 
barriers seems like a very challenging task.

✩ A preliminary version of this work has been presented at ICALP 2013.
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1 The O�-notation suppresses factors polynomial in the input size.
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From a broader perspective, improving upon a trivial brute-force or a simple dynamic programming algorithm is one of 
the main goals of the field of exponential-time algorithms. The last few years brought a number of positive results in that 
direction, most notably the O�(1.66n) randomized algorithm for finding a Hamiltonian cycle in an undirected graph [6]. 
However, it is conjectured (the so-called Strong Exponential Time Hypothesis [7]) that the central problem of satisfying a 
general CNF-SAT formulae does not admit any exponentially better algorithm than the trivial brute-force one. A number of 
lower bounds were proven using this assumption [8–10].

Although the aforementioned 2n or 2n/2-barriers may be difficult or even outright impossible to break, it seems reason-
able to suspect that additional assumptions on the graph structure, such as bounded degree or bounded average degree, 
simplify the computational tasks significantly. In the case of the problem of counting perfect matchings in bipartite graphs, 
the classic algorithm of Ryser [4] the best known improvement in general graphs is an algorithm running in expected time 
O�(2(1−O (n2/3 log n))·n/2) due to Bax and Franklin [11]. If one assumes bounded average degree, faster algorithms have been 
given by Servedio and Wan [12] and, very recently, by Izumi and Wadayama [13]. In Section 2 we continue this line of 
research and show the following.

Theorem 1. For any commutative semiring R, given an m ×n matrix M, m ≤ n with elements from R with at most dm non-zero entries 
for some d ≥ 2, one can compute the permanent of M using O�(2(1−1/(3.55d))m) time and performing O�(2(1−1/(3.55d))m) operations 
over the semiring R. The algorithm may require to use exponential space and store an exponential number of elements from R.

Note that the number of perfect matchings in a bipartite graph is equal to the permanent of the adjacency matrix of this 
graph (computed over Z). Hence, we improve the running time of [13,12] in terms of the dependency on d. We would like 
to emphasize that our proof of Theorem 1 is elementary and does not need the advanced techniques of coding theory used 
in [13].

Since the algorithm of Theorem 1 is able to handle the computation of the permanent of any matrix over commutative 
semiring, not only the special case of computing the number of perfect matchings, our result shows also that the running 
time of the algorithm of Björklund et al. [14] can be improved for sparse matrices.

In Section 3, we move to the problem of counting perfect matchings in general graphs. An algorithm solving this problem 
in O�(2n/2) time, that is, in time matching the bound for bipartite graphs, has been discovered very recently, in 2012, by 
Björklund [5]. Björklund’s result improved upon previous algorithms with running time O�(1.732n) due to Björklund and 
Husfeldt [15] and with running time O�(1.619n) due to Koivisto [16]. We remark that, in contrast, the corresponding 
algorithm of Ryser [4] for bipartite graphs is already 50-years old. In Section 3, we observe that the problem of counting 
perfect matchings in general graphs can be reduced to a problem of counting some special types of cycle covers, which, 
in turn, can be done in O�(2n/2)-time and polynomial space for an n-vertex graph, using the inclusion–exclusion principle. 
Thus, we obtain a new proof of the main result of [5], using the inclusion–exclusion principle instead of advanced algebraic 
transformations.

The problem of counting some special types of cycle covers, introduced in Section 3, moves us to the area of Hamiltonian-
like problems. In 2008 Björklund et al. [17] observed that the classic dynamic programming algorithm for finding minimum 
weight Hamiltonian cycle can be trimmed to running time O�(2(1−εΔ)n) in graphs of maximum degree Δ. The cost of this 
improvement is the use of exponential space, as we can no longer easily translate the dynamic programming algorithm 
into an inclusion–exclusion formula. The ideas from [17] were also applied to the Fast Subset Convolution algorithm [18], 
yielding a similar improvements for the problem of computing the chromatic number in graphs of bounded degree [19].

In Section 4 we show a combinatorial lemma that bounds the number of “Hamiltonian-like” structures in a graph of 
bounded average degree. Using this result, in Section 5 we show the following.

Theorem 2. For every d ≥ 1 there exists a constant εd > 0 such that, given an n-vertex graph G of average degree bounded by d, in 
O�(2(1−εd)n) time and exponential space one can find in G a minimum weight Hamiltonian cycle.

Theorem 3. For every d ≥ 1 there exists a constant ε′
d > 0 such that, given an n-vertex graph G of average degree bounded by d, in 

O�(2(1−ε′
d)n/2) time and exponential space one can count the number of perfect matchings in G.

Theorem 2 generalizes the results of [17] to the graphs of bounded average degree. To the best of our knowledge, 
Theorem 3 is the first result that breaks the 2n/2-barrier for counting perfect matchings in not necessarily bipartite graphs of 
bounded (average) degree. We note that in Theorems 2 and 3 the constants εd and ε′

d depend on d in a doubly-exponential 
manner, which is worse than the single-exponential behavior of [17] in graphs of bounded degree.

Let us now shortly elaborate on the techniques used to prove the above theorems. Following the same general approach 
as the results of [17] for graphs of bounded degree, we want to limit the number of states of the classic dynamic pro-
gramming algorithm for minimum weight Hamiltonian cycle or of the algorithm developed in Section 3 for counting perfect 
matchings (written as a dynamic programming algorithm, instead of one based on the inclusion–exclusion principle). How-
ever, in order to deal with graphs of bounded average degree, we need to introduce new concepts and tools. Recall that, 
by a standard averaging argument, if the average degree of an n-vertex graph G is bounded by d, for any D ≥ d there are 
at most dn/D vertices of degree at least D . However, it turns out that this bound cannot be tight for a large number of 
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