
Information and Computation 239 (2014) 3–12

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Isomorphism testing of Boolean functions computable

by constant-depth circuits

V. Arvind, Yadu Vasudev ∗

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 July 2013
Available online 20 August 2014

Keywords:
Constant-depth circuits
Boolean functions
Isomorphism

Given two n-variable Boolean functions f and g, we study the problem of computing an
ε-approximate isomorphism between them. An ε-approximate isomorphism is a permutation
π of the n Boolean variables such that f (x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n))

differ on at most an ε fraction of all Boolean inputs {0, 1}n . We give a randomized
2O (

√
n log(n/ε)O (d)) time algorithm that computes an ε-approximate isomorphism between

two isomorphic Boolean functions f and g that are given by depth d circuits of poly(n)

size, where d is a constant independent of n, for any positive ε. In contrast, the best
known algorithm for computing an exact isomorphism between n-ary Boolean functions
has running time 2O (n) [12] even for functions computed by poly(n) size DNF formulas.
Our algorithm is based on a result for hypergraph isomorphism with bounded edge size
[4] and the classical Linial–Mansour–Nisan result on approximating small depth and size
Boolean circuits by small degree polynomials using Fourier analysis [11].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Given two Boolean functions f , g : {0, 1}n → {0, 1} the Boolean function isomorphism is the problem of checking if there is
a permutation π of the variables such that the Boolean functions f (x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n)) are equiva-
lent. The functions f and g could be given as input either by Boolean circuits that compute them or simply by black-box
access to them. This problem is known to be coNP-hard even when f and g are given by DNF formulas (there is an easy
reduction from CNFSAT). The problem is in Σ p

2 but not known to be in coNP. Furthermore, Agrawal and Thierauf [1] have
shown that the problem is not complete for Σ p

2 unless the polynomial hierarchy collapses to Σ p
3 .

On the other hand, the best known algorithm for Boolean function isomorphism runs in time 2O (n) where n is the
number of variables in f and g . This algorithm works even when f and g are given by only black-box access: First,
the truth-tables of the functions f and g can be computed in time 2O (n) . The truth tables for f and g can be seen as
hypergraphs G f and G g where S ⊆ [n] is an edge in G f if f (xS) = 1 where xS is the characteristic vector corresponding
to S . Hypergraph Isomorphism for n-vertex and m-edge hypergraphs has a 2O (n)mO (1) algorithm due to Luks [12] which
yields the claimed 2O (n) time algorithm for testing if f and g are isomorphic. This is the current best known algorithm for
general hypergraphs and hence the current fastest algorithm for Boolean function isomorphism as well. Indeed, a hypergraph
on n vertices and m edges can be represented as a DNF formula on n variables with m terms. Thus, even when f and g

are DNF formulas the best known isomorphism test takes 2O (n) time. In contrast, Graph Isomorphism has a 2O (
√

n log n) time

* Corresponding author.
E-mail addresses: arvind@imsc.res.in (V. Arvind), yadu@imsc.res.in (Y. Vasudev).

http://dx.doi.org/10.1016/j.ic.2014.08.003
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:arvind@imsc.res.in
mailto:yadu@imsc.res.in
http://dx.doi.org/10.1016/j.ic.2014.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.08.003&domain=pdf

4 V. Arvind, Y. Vasudev / Information and Computation 239 (2014) 3–12

algorithm due to Luks and Zemlyachenko (see [5]). More recently, Babai and Codenotti [4] have shown for hypergraphs of
edge size bounded by k that isomorphism testing can be done in 2Õ (k2√

n) time.

1.1. Our results

Since the exact isomorphism problem for Boolean functions is as hard as Hypergraph Isomorphism, and it appears dif-
ficult to improve the 2O (n) bound, we investigate the problem of computing approximate isomorphisms (which we define
below). An interesting question is whether the circuit complexity of f and g can be exploited to give a faster approximate
isomorphism test. Specifically, in this paper we study the approximation version of Boolean function isomorphism for func-
tions computed by small size and small depth circuits and give a faster algorithm for computing approximate isomorphisms.
Before we explain our results we give some formal definitions.

Let Bn denote the set of all n-ary Boolean functions f : {0, 1}n → {0, 1}. Let g : {0, 1}n → {0, 1} be a Boolean function and
let π : [n] → [n] be any permutation. The Boolean function gπ : {0, 1}n → {0, 1} obtained by applying the permutation π to
the function g is defined as follows: gπ (x1, x2, . . . , xn) = g(xπ(1), xπ(2), . . . , xπ(n)).

This defines a (faithful) group action of the permutation group Sn on the set Bn . I.e. g(πψ) = (gπ)ψ for all g ∈ Bn and
π, ψ ∈ Sn , and gπ = gψ for all g ∈ Bn if and only if π = ψ .

Definition 1.1. Two Boolean functions f , g ∈ Bn are said to be isomorphic (denoted by f ∼= g) if there exists a permutation
π : [n] → [n] such that ∀x ∈ {0, 1}n , f (x) = gπ (x).

Our notion of approximate isomorphism of Boolean functions is based on the notion of closeness of Boolean functions
which we now recall.

Definition 1.2. Two Boolean functions f , g are 1
2� -close if Prx∈{0,1}n [f (x) 	= g(x)] ≤ 1

2� .

Definition 1.3. Two Boolean functions f , g are 1
2� -approximate isomorphic if there exists a permutation π : [n] → [n] such

that the functions f and gπ are 1
2� -close.

Let ACs,d,n denote the class of n-ary Boolean functions computed by Boolean circuits of depth d and size s, where the
circuit gates allowed are unbounded fan-in AND and OR gates, and negation gates. We recall that constant depth unbounded
fan-in circuits are well-studied in complexity theory. The class AC0 consists of languages L ⊆ {0, 1}∗ for which there is a
nonuniform family of circuits {Cn}n>0 such that: (i) For each n the circuit Cn takes n input bits and accepts precisely the
length n strings in L, and (ii) There are a constant d and a polynomial p(n) such that Cn is an unbounded fan-in circuit
of depth bounded by d and size bounded by p(n) for each n. Furst, Saxe and Sipser [9] proved that the language of all
strings of odd parity (i.e. the range of the parity function) is not in AC0. A far reaching improvement of this result was
due to Håstad [10] who obtained essentially optimal lower bounds for computing the parity of n variables. A different
approach due to Razborov and Smolensky was to show that AC0 circuits can be well approximated by polylogarithmic
degree polynomials [14,15]. This technique was powerful enough to prove lower bounds even for AC0 circuits that are
allowed unbounded fan-in Mod p gates for prime p.

Linial, Mansour and Nisan [11], in the context of learnability of AC0 computable functions, gave a different approxi-
mation of AC0 circuits by polylogarithmic degree polynomials based on the Fourier analytic properties of AC0 computable
Boolean functions. This technique of [11] is a crucial ingredient in our algorithm for computing an approximate isomor-
phism between f and g given by ACs,d,n circuits. If π is an isomorphism from f to g then we can show that π must
map the approximating polynomial of f , defined via Fourier coefficients [11], to the approximating polynomial of g . This
property is not true for the Razborov–Smolensky polynomial approximations of f and g; it is because those are probabilistic
polynomials and we can only say that π maps the polynomial distribution corresponding to f to the one corresponding
to g .

Suppose f , g ∈ACs,d,n are isomorphic Boolean functions. As a consequence of the main result, in Section 2, we show that
there is a randomized algorithm that computes an ε-approximate isomorphism between f and g in time 2log(n/ε)O (d)

√
n for

any positive ε. This is substantially faster than the 2O (n) time algorithm for computing an exact isomorphism. We show how
to achieve this running time by combining the Fourier analytic properties of Boolean functions with the Babai–Codenotti
algorithm mentioned above.

Isomorphism testing of functions computable by restricted circuit classes have been studied in the literature and we
point to a couple of recent works in this direction [3,13]. In a different context, approximate Boolean function isomorphism
has been studied in the framework of property testing, and nearly matching upper and lower bounds are known [2,6,8]. In
property testing the objective is to test whether two given Boolean functions are close to being isomorphic or far apart.
The goal is to design a property tester with low query complexity. In contrast, our result is algorithmic and the goal is to
efficiently compute a good approximate isomorphism.

Download English Version:

https://daneshyari.com/en/article/426473

Download Persian Version:

https://daneshyari.com/article/426473

Daneshyari.com

https://daneshyari.com/en/article/426473
https://daneshyari.com/article/426473
https://daneshyari.com

