Isomorphism testing of Boolean functions computable by constant-depth circuits

V. Arvind, Yadu Vasudev*
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India

ARTICLE INFO

Article history:

Received 24 July 2013
Available online 20 August 2014

Keywords:

Constant-depth circuits
Boolean functions
Isomorphism

Abstract

Given two n-variable Boolean functions f and g, we study the problem of computing an ε-approximate isomorphism between them. An ε-approximate isomorphism is a permutation π of the n Boolean variables such that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $g\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ differ on at most an ε fraction of all Boolean inputs $\{0,1\}^{n}$. We give a randomized $2^{O\left(\sqrt{n} \log (n / \varepsilon)^{O(d)}\right)}$ time algorithm that computes an ε-approximate isomorphism between two isomorphic Boolean functions f and g that are given by depth d circuits of poly (n) size, where d is a constant independent of n, for any positive ε. In contrast, the best known algorithm for computing an exact isomorphism between n-ary Boolean functions has running time $2^{O(n)}$ [12] even for functions computed by poly(n) size DNF formulas. Our algorithm is based on a result for hypergraph isomorphism with bounded edge size [4] and the classical Linial-Mansour-Nisan result on approximating small depth and size Boolean circuits by small degree polynomials using Fourier analysis [11].

(C) 2014 Elsevier Inc. All rights reserved.

1. Introduction

Given two Boolean functions $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ the Boolean function isomorphism is the problem of checking if there is a permutation π of the variables such that the Boolean functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $g\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ are equivalent. The functions f and g could be given as input either by Boolean circuits that compute them or simply by black-box access to them. This problem is known to be coNP-hard even when f and g are given by DNF formulas (there is an easy reduction from CNFSAT). The problem is in Σ_{2}^{p} but not known to be in coNP. Furthermore, Agrawal and Thierauf [1] have shown that the problem is not complete for Σ_{2}^{p} unless the polynomial hierarchy collapses to Σ_{3}^{p}.

On the other hand, the best known algorithm for Boolean function isomorphism runs in time $2^{O(n)}$ where n is the number of variables in f and g. This algorithm works even when f and g are given by only black-box access: First, the truth-tables of the functions f and g can be computed in time $2^{O(n)}$. The truth tables for f and g can be seen as hypergraphs G_{f} and G_{g} where $S \subseteq[n]$ is an edge in G_{f} if $f\left(x_{S}\right)=1$ where x_{S} is the characteristic vector corresponding to S. Hypergraph Isomorphism for n-vertex and m-edge hypergraphs has a $2^{0(n)} m^{0(1)}$ algorithm due to Luks [12] which yields the claimed $2^{O(n)}$ time algorithm for testing if f and g are isomorphic. This is the current best known algorithm for general hypergraphs and hence the current fastest algorithm for Boolean function isomorphism as well. Indeed, a hypergraph on n vertices and m edges can be represented as a DNF formula on n variables with m terms. Thus, even when f and g are DNF formulas the best known isomorphism test takes $2^{O(n)}$ time. In contrast, Graph Isomorphism has a $2^{O(\sqrt{n \log n})}$ time

[^0]algorithm due to Luks and Zemlyachenko (see [5]). More recently, Babai and Codenotti [4] have shown for hypergraphs of edge size bounded by k that isomorphism testing can be done in $2^{\widetilde{O}\left(k^{2} \sqrt{n}\right)}$ time.

1.1. Our results

Since the exact isomorphism problem for Boolean functions is as hard as Hypergraph Isomorphism, and it appears difficult to improve the $2^{O(n)}$ bound, we investigate the problem of computing approximate isomorphisms (which we define below). An interesting question is whether the circuit complexity of f and g can be exploited to give a faster approximate isomorphism test. Specifically, in this paper we study the approximation version of Boolean function isomorphism for functions computed by small size and small depth circuits and give a faster algorithm for computing approximate isomorphisms. Before we explain our results we give some formal definitions.

Let \mathcal{B}_{n} denote the set of all n-ary Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Let $g:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function and let $\pi:[n] \rightarrow[n]$ be any permutation. The Boolean function $g^{\pi}:\{0,1\}^{n} \rightarrow\{0,1\}$ obtained by applying the permutation π to the function g is defined as follows: $g^{\pi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$.

This defines a (faithful) group action of the permutation group S_{n} on the set \mathcal{B}_{n}. I.e. $g^{(\pi \psi)}=\left(g^{\pi}\right)^{\psi}$ for all $g \in \mathcal{B}_{n}$ and $\pi, \psi \in S_{n}$, and $g^{\pi}=g^{\psi}$ for all $g \in \mathcal{B}_{n}$ if and only if $\pi=\psi$.

Definition 1.1. Two Boolean functions $f, g \in \mathcal{B}_{n}$ are said to be isomorphic (denoted by $f \cong g$) if there exists a permutation $\pi:[n] \rightarrow[n]$ such that $\forall x \in\{0,1\}^{n}, f(x)=g^{\pi}(x)$.

Our notion of approximate isomorphism of Boolean functions is based on the notion of closeness of Boolean functions which we now recall.

Definition 1.2. Two Boolean functions f, g are $\frac{1}{2^{\ell}}$-close if $\operatorname{Pr}_{x \in\{0,1\}^{n}}[f(x) \neq g(x)] \leq \frac{1}{2^{\ell}}$.

Definition 1.3. Two Boolean functions f, g are $\frac{1}{2^{\ell}}$-approximate isomorphic if there exists a permutation $\pi:[n] \rightarrow[n]$ such that the functions f and g^{π} are $\frac{1}{2^{\ell}}$-close.

Let $\mathcal{A C}_{s, d, n}$ denote the class of n-ary Boolean functions computed by Boolean circuits of depth d and size s, where the circuit gates allowed are unbounded fan-in AND and OR gates, and negation gates. We recall that constant depth unbounded fan-in circuits are well-studied in complexity theory. The class $A C^{0}$ consists of languages $L \subseteq\{0,1\}^{*}$ for which there is a nonuniform family of circuits $\left\{C_{n}\right\}_{n>0}$ such that: (i) For each n the circuit C_{n} takes n input bits and accepts precisely the length n strings in L, and (ii) There are a constant d and a polynomial $p(n)$ such that C_{n} is an unbounded fan-in circuit of depth bounded by d and size bounded by $p(n)$ for each n. Furst, Saxe and Sipser [9] proved that the language of all strings of odd parity (i.e. the range of the parity function) is not in $A C^{0}$. A far reaching improvement of this result was due to Håstad [10] who obtained essentially optimal lower bounds for computing the parity of n variables. A different approach due to Razborov and Smolensky was to show that AC^{0} circuits can be well approximated by polylogarithmic degree polynomials [14,15]. This technique was powerful enough to prove lower bounds even for AC^{0} circuits that are allowed unbounded fan-in Mod p gates for prime p.

Linial, Mansour and Nisan [11], in the context of learnability of $A C^{0}$ computable functions, gave a different approximation of $A C^{0}$ circuits by polylogarithmic degree polynomials based on the Fourier analytic properties of $A C^{0}$ computable Boolean functions. This technique of [11] is a crucial ingredient in our algorithm for computing an approximate isomorphism between f and g given by $\mathcal{A}_{s, d, n}$ circuits. If π is an isomorphism from f to g then we can show that π must map the approximating polynomial of f, defined via Fourier coefficients [11], to the approximating polynomial of g. This property is not true for the Razborov-Smolensky polynomial approximations of f and g; it is because those are probabilistic polynomials and we can only say that π maps the polynomial distribution corresponding to f to the one corresponding to g.

Suppose $f, g \in \mathcal{A C}_{s, d, n}$ are isomorphic Boolean functions. As a consequence of the main result, in Section 2, we show that there is a randomized algorithm that computes an ε-approximate isomorphism between f and g in time $2^{\log (n / \varepsilon)^{O(d)} \sqrt{n}}$ for any positive ε. This is substantially faster than the $2^{O(n)}$ time algorithm for computing an exact isomorphism. We show how to achieve this running time by combining the Fourier analytic properties of Boolean functions with the Babai-Codenotti algorithm mentioned above.

Isomorphism testing of functions computable by restricted circuit classes have been studied in the literature and we point to a couple of recent works in this direction [3,13]. In a different context, approximate Boolean function isomorphism has been studied in the framework of property testing, and nearly matching upper and lower bounds are known [2,6,8]. In property testing the objective is to test whether two given Boolean functions are close to being isomorphic or far apart. The goal is to design a property tester with low query complexity. In contrast, our result is algorithmic and the goal is to efficiently compute a good approximate isomorphism.

https://daneshyari.com/en/article/426473

Download Persian Version:

https://daneshyari.com/article/426473

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: arvind@imsc.res.in (V. Arvind), yadu@imsc.res.in (Y. Vasudev).

