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Agreement problems and their solutions are essential to fault-tolerant distributed com-
puting. Over the years, different assumptions on failures have been considered, but most 
of these assumptions were focusing on either processes or links. In contrast, we examine 
a model where both links and processes can fail. In this model we devise a unified 
lower bound for resilience to both classes of faults. We show that the bound is tight by 
devising a simple retransmission scheme that allows optimally resilient algorithms to be 
constructed from well known algorithms by transparently adding link-fault tolerance. Our 
results show that when considering multiple independent failure modes, resilience bounds 
are not necessarily additive.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

One fundamental problem arising in distributed systems is that of coordination: How do distributed processes reach 
agreement on a common course of action? Although this question is easy to answer in the fault free case, it is the central 
question behind all fault-tolerant agreement problems (see [1] for a survey). One problem from this class is consensus. The 
consensus problem is defined by every process having some private, initial value and the need to determine an output 
value, which is required to be the same on all processes. More formally, an algorithm solving consensus in a system with 
Byzantine failures has to ensure the following properties:

Agreement: No two correct processes decide on different values.
Validity: If all correct processes share their initial value v , then the decision value must be v .
Termination: All correct processes eventually decide.

In the definition above, the set of initial values is not constrained. In the proofs of our lower bound results we argue 
about a variant of consensus called binary consensus in which only two possible values (namely 0 and 1) are considered. 
This does not weaken our lower bound, as any algorithm solving the problem with an arbitrary sets of inputs must be able 
to solve the binary variant of the problem.

While the Agreement and Termination properties do not vary, different Validity properties have been considered. Follow-
ing [2], our Validity property is sometimes also referred to as Strong Unanimity. As pointed out in [3] most of the different 
validity conditions coincide in the case of binary consensus.
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The contribution of this paper is a lower bound on resilience for consensus in synchronous systems in the presence of 
both link and process failures. In particular, we consider processes that may fail arbitrarily. That is, we consider permanent 
Byzantine process failures. For link failures, we consider two failure modes: Faulty links can either drop or modify messages. 
For our lower bound, we assume a static assignment of failures to links. For the matching upper bound, we allow dynamic 
link failures, i.e., the faulty links may change from one round to the next. The upper bound is shown by introducing 
a retransmission scheme to mask the link failures allowed by our model, rather than by introducing a (new) consensus 
algorithm. Using the retransmission scheme any consensus algorithms with optimal resilience to Byzantine failures becomes 
a consensus algorithm with optimal resilience to Byzantine failures and link failures. While we give the lower bounds for 
consensus only, the retransmission protocol could be used with algorithms for other problems as well.

The paper proceeds as follows: After introducing our model in Section 2, we show a series of lower bound results in 
Section 3. In order to develop our main lower bound (Theorem 4), we will start by presenting the impossibility of solving 
consensus, when, for each process, at most one incoming link drops messages, at most one (additional) incoming link can 
modify or drop messages, and likewise for the outgoing links. This result is based on the intuitive proof technique, called 
scenario argument by Fischer, Lynch, and Merritt [4]. We then generalize this result for larger numbers of link failures (that 
is larger systems) using the same technique. This contrasts with the approaches taken in [4] and [5], which use different 
techniques for extending the one-failure case to larger numbers of failures. (We discuss these approaches in more detail in 
Section 6.) Apart from making the proofs easier to understand, the advantage of our approach is that it can be used to find 
a unified lower bound for link and process faults, which is presented in Section 4. Up to now, lower bounds were typically 
either concerned with links or process failures. One might assume that bounds for combinations of link and process failures 
are simply obtained by adding the two bounds. It is well known that consensus requires n > 3 f in the presence of up 
to f Byzantine processes [6]. Moreover, Schmid, Weiss, and Keidar [5] have established that n > 4� is required, where �
is a system parameter limiting the number of value faulty links. Thus one might expect a composite lower bound to be 
n > 3 f + 4�. The main contribution of this paper is to show that this intuition is wrong. Rather, it is sufficient to have 
n > max{2 f + 4�, 3 f }. This bound is shown to be tight by the lower bound results in Section 3. Sufficiency is established 
by presenting a retransmission scheme which requires n > 2 f + 4� to mask link failures (Section 5). This allows us to 
reuse existing consensus algorithms with optimal resilience. The resilience is not changed because link failures are masked. 
Here, the interesting observation is that, in the presence of Byzantine process faults, some link faults can be tolerated for 
free.

2. Model

Our model is based on the work of Fischer, Lynch, and Merritt [4] as well as the perception based fault model, e.g., [7]. 
In particular, our assumptions are based on the latter, while the modeling follows the former more closely, although the 
inclusion of arbitrary link faults requires some changes.

A communication graph is a directed graph G with node set nodes(G) and edge set edges(G). A system is a communi-
cation graph with an assignment of an input value and a process to each node in nodes(G). Processes have identifiers and 
execute some algorithm. As the algorithms we consider in this paper are limited to binary consensus algorithms, the input 
values are taken from the set {0, 1}. Throughout the paper we will use pi[v] as a way to identify the node running a process 
with identifier i and input value v . In certain cases identifiers are not unique, but the combination of identifier and input 
value will be. If identifier and input value are clear from the context or do not matter for the discussion at hand, we will 
usually omit them.

In this paper we limit our attention to round based algorithms. Therefore we can define the behavior of a node p to be 
a collection of functions σ j

p (r), one for the identifier, j, of each out-neighbor of node p, which maps the round number, r, 
to the message node p sends to the node with identifier j in round r or ⊥, if p does not send a message to that node in 
that round. We similarly define the edge behavior δe(r) of an edge e to map each round number r to either a message or ⊥. 
Thus the behavior of both nodes and edges is defined based on the sequence of messages they emit.

As mentioned above, processes execute algorithms. An algorithm is defined by a set of states, some of which are initial 
states, its transition function τ (s, R), which specifies how the state evolves from round to round based on the previous state 
s and the set R of received messages, and a message function μ(s), which specifies what message a process running the 
algorithm is to broadcast based on the state s. A run of the process running on node pi[v] starts from the round 0 state, 
which encodes both the identifier i and the input value v . For each round r ≥ 0, it determines the messages received based 
on δe(r) of each incoming edge e of pi[v] and then determines the round r + 1 state based on the round r state and these 
messages. The process behavior sp(r) of the process running on node p maps round r to the state of the process at round r. 
A system behavior is the collection of behaviors of the nodes, processes, and edges that constitute the system.

We can now define what constitutes correct and faulty behavior of nodes and edges. An edge e from node q to pi[v]
exhibits correct behavior if, for each round r, δe(r) = σ i

q(r). That is, in each round the message it delivers is what the node 
behavior of q specifies for processes with identifier i. If e is not correct, but δe(r) ∈ {⊥, σ i

q(r)} for all rounds r, we say 
the edge exhibits message loss. In all other cases, we say the edge exhibits arbitrarily faulty behavior. Note that, in our 
impossibility proofs, we will consider any edge e that exhibits message loss to lose all messages, that is, for every round r, 
δe(r) = ⊥.
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