
Information and Computation 239 (2014) 254–302

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Linear logical relations and observational equivalences 

for session-based concurrency

Jorge A. Pérez a,∗, Luís Caires b, Frank Pfenning c, Bernardo Toninho b,c

a Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Netherlands
b CITI, NOVA LINCS and Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal
c Computer Science Department, Carnegie Mellon University, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 September 2013
Received in revised form 22 April 2014
Available online 11 August 2014

Keywords:
Session types
Linear logic
Process calculi
Strong normalization
Confluence
Logical relations
Observational equivalences

We investigate strong normalization, confluence, and behavioral equality in the realm 
of session-based concurrency. These interrelated issues underpin advanced correctness 
analysis in models of structured communications. The starting point for our study is an 
interpretation of linear logic propositions as session types for communicating processes, 
proposed in prior work. Strong normalization and confluence are established by developing 
a theory of logical relations. Defined upon a linear type structure, our logical relations 
remain remarkably similar to those for functional languages. We also introduce a natural 
notion of observational equivalence for session-typed processes. Strong normalization and 
confluence come in handy in the associated coinductive reasoning: as applications, we 
prove that all proof conversions induced by the logic interpretation actually express 
observational equivalences, and explain how type isomorphisms resulting from linear logic 
equivalences are realized by coercions between interface types of session-based concurrent 
systems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern computing systems rely heavily on the communication between distributed software artifacts. Hence, to a large 
extent, guaranteeing system correctness amounts to ensuring consistent dialogues between such artifacts. This is a chal-
lenging task, given the complex interaction patterns that communicating systems usually feature. Session-based concurrency
provides a foundational approach to communication correctness: concurrent dialogues are structured into basic units called 
sessions; descriptions of the interaction patterns are then abstracted as session types [22,23,17], which are statically checked 
against specifications. These specifications are usually given in the π -calculus [31,42], and so we obtain processes interacting 
on so-called session channels which connect exactly two subsystems. The discipline of session types ensures protocols in 
which actions always occur in dual pairs: when one partner sends, the other receives; when one partner offers a selection, 
the other chooses; when a session terminates, no further interaction may occur. New sessions may be dynamically created 
by invoking shared servers. While concurrency arises in the simultaneous execution of sessions, mobility results from the 
exchange of session and server names.

The goal of this paper is to investigate strong normalization, confluence, and typed behavioral equivalences for session-
typed, communicating processes. These interrelated issues underpin advanced correctness analysis in models of structured 

* Corresponding author.
E-mail addresses: j.a.perez@rug.nl (J.A. Pérez), lcaires@fct.unl.pt (L. Caires), fp@cs.cmu.edu (F. Pfenning), btoninho@cs.cmu.edu (B. Toninho).

http://dx.doi.org/10.1016/j.ic.2014.08.001
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:j.a.perez@rug.nl
mailto:lcaires@fct.unl.pt
mailto:fp@cs.cmu.edu
mailto:btoninho@cs.cmu.edu
http://dx.doi.org/10.1016/j.ic.2014.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.08.001&domain=pdf


J.A. Pérez et al. / Information and Computation 239 (2014) 254–302 255

communications. Our study builds upon the interpretation of linear logic propositions as session types put forward by Caires 
and Pfenning in [11]. In a concurrent setting, such an interpretation defines a tight propositions-as-types/proofs-as-programs 
correspondence, in the style of the Curry–Howard isomorphism for the simply-typed λ-calculus [24]. In the interpretation, 
types (linear logic propositions) are assigned to names (communication channels) and describe their session protocol; typ-
ing rules correspond to linear sequent calculus proof rules and processes correspond to proof objects in logic derivations. 
Moreover, process reduction may be simulated by proof conversions and reductions, and vice versa. As a result, typed pro-
cesses enjoy strong forms of subject reduction (type preservation) and global progress (deadlock-freedom). While the former 
states that well-typed processes always evolve to well-typed processes (a safety property), the latter says that well-typed 
processes will never get into a stuck state (a liveness property). These strong correctness properties make the framework 
in [11] a convenient basis for our study of strong normalization, confluence, and behavioral equivalences. Well-studied in 
sequential settings, these three interrelated issues constitute substantial challenges for theories of communicating processes, 
as we motivate next.

In typed functional calculi, strong normalization ensures that well-typed terms do not have infinite reduction sequences. 
Types rule out divergent computations; termination of reduction entails consistency of the corresponding logical systems. 
In the realm of communicating processes, reduction captures atomic synchronization; associated behavioral types exclude 
unintended structured interactions. As a result, strong normalization acquires an enhanced significance in a concurrent 
setting. In fact, even if subject reduction and progress are typically regarded as the key correctness guarantees for processes, 
requiring strongly normalizing behaviors is also most sensible: while from a global perspective systems are meant to run 
forever, at a local level we wish responsive participants which always react within a finite amount of time, and never engage 
into infinite internal behavior. For instance, in server-client applications it is critical for clients to be sure that running code 
provided by the server will not cause them to get stuck indefinitely (as in a denial-of-service attack, or just due to some 
bug).

Closely related to strong normalization, confluence is another appealing property. In a communication-based setting, 
confluence would strengthen correctness guarantees by ensuring predictability of structured interactions. This benefit may 
be more concretely seen by considering the principle of typed process composition derived from the logic interpretation. 
In [11], typing judgments specify both the session behavior that a process offers (or implements) and the set of (unrestricted 
and linear) behaviors that it requires to do so. For instance, the judgment

u:B ; x1:A1, . . . , xn:An � P :: z:C (1)

specifies a process P which offers behavior C along name z by making use of an unrestricted behavior B (a replicated server, 
available on name u) and of linear behaviors A1, . . . , An (offered on names x1, . . . , xn). A process implementing one of these 
linear dependencies could be specified by the judgment

· ; · � S1 :: x1:A1 (2)

which says that process S1 does not depend on any linear or unrestricted session behaviors to offer behavior A1 along 
name x1. We write ‘·’ to denote the empty set of dependencies. Given a typed interface such as (1), to satisfy each of 
the declared behavioral dependencies we need to first (i) compose the given process with another one which realizes the 
required behavior, and then (ii) restrict the name in which the behavior is required/offered, to avoid interferences. As a 
result, the interactions between the given process and the processes implementing its dependencies are unobservable. In 
the case of (1) and (2) above we would obtain the following typed composition:

u:B ; x2:A2, . . . , xn:An � (νx1)(S1 | P ) :: z:C (3)

Hence, interactions on name x1 become unobservable in the resulting composed process; its set of dependencies combines 
those of P (excepting x1:A1) and those of S1 (in this case, the empty set). From (3) we could proceed similarly for all the 
behaviors declared in the left-hand side, thus obtaining a typed process without dependencies:

· ; · � (νm̃)
(!u(y).R

∣∣ S1
∣∣ · · · ∣∣ Sn

∣∣ P
) :: z:C (4)

with m̃ = u, x1, . . . , xn and · ; · � R :: y:B . In the above process, all behavioral dependencies arise as internal reductions; the 
only visible behavior takes place on name z. Notice that processes R, S1, . . . , Sn may well have internal behavior on their 
own. For processes such as the one in (4), the interplay of confluence with strong normalization would be significant, as 
it could crucially ensure that session behavior as declared by judgments in the right-hand side (z:C in this case) will be 
always offered, independently from any arbitrary interleaving of internal reductions from different sources.

Now, in sharp contrast to the normalizing, confluent nature of computation in many typed functional calculi, process 
calculi are inherently non-terminating, non-confluent models of concurrent computation. Hence, unsurprisingly, ensuring 
strong normalization and confluence in calculi for concurrency is a hard problem: in (variants of) the π -calculus, proofs 
require heavy constraints on the language and/or its types, often relying on ad-hoc machineries (see [15] for a survey on 
termination in process calculi). As a first challenge, we wonder: building upon our linear type structure, directly obtained 
from the Curry–Howard correspondence in [11], can we establish useful forms of strong normalization and confluence for 
session-typed, communicating processes?



Download English Version:

https://daneshyari.com/en/article/426488

Download Persian Version:

https://daneshyari.com/article/426488

Daneshyari.com

https://daneshyari.com/en/article/426488
https://daneshyari.com/article/426488
https://daneshyari.com

