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Combinatorial proofs are abstract invariants for sequent calculus proofs, similarly to homo-

topy groupswhich are abstract invariants for topological spaces. Sequent calculus fails to be

surjective onto combinatorial proofs, and here we extract a syntactically motivated closure

of sequent calculus from which there is a surjection onto a complete set of combinatorial

proofs.We characterize a class of canonical sequent calculus proofs for the full set of propo-

sitional tautologies andderiveanewcompleteness theoremfor combinatorial propositions.

For this, we define a new mapping between combinatorial proofs and sequent calculus

proofs, different from the one originally proposed, which explicitly links the logical flow

graph of a proof to a skew fibration between graphs of formulas. The categorical properties

relating the original and the new mappings are explicitly discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The notion of a formula is usually associated to a sequential string of symbols or to a tree-like structure. But a formula

can be represented as a more complex geometrical object, like a graph, a 2-cell, a polyhedra, or a circuit for instance, and

its satisfiability can be characterized to be a geometrical property. The idea of using graphs to represent logical formulas

has being exploited to show the NP-completeness of several graph-theoretical problems, as finding a “clique" or a “set-

covering" [18]. Here we analyze another graph-theoretical representation of formulas, which, in contrast with the ones used

in computational complexity, is used to characterize validity and could be generalized to arbitrary predicate formulas. The

idea is to consider propositional formulas and proofs as colored graphs and define an embedding of formulas into proofs. The

embedding can be intuitively thought to be a “projection" of the formula in its proof. For certain formulas, the geometrical

characterizationhappens to suggest the structureof theproof for the formulaandboth the formulaand itsproof are associated

to the same colored graph [16]. These formulas are provable inmultiplicative linear logicwithmix and for this logical system,

a graph-theoretical property guarantees a graph representing a formula to be a graph of a proof. Namely, the cograph of a

formula is a proofwhenever any alternate elementary cycle in it contains a chord, and viceversa [16]. This beautiful structural

result proved for a fragment of linear logic, does not hold for classical proofs because of the collapse of vertices in the graph

associated to contractions. Hence, the identification of a purely geometrical criterium to guarantee that a graph is a graph

for a classical proof becomes difficult but intriguing. An approach to investigate the geometrical complexity of this question

is proposed in [12] where the logical language of formulas and proofs is replaced by a purely combinatorial language of

graphs and homomorphisms. The graph-theoretical representation of propositional formulas as colored cographs (named

combinatorial propositions in [12]) is considered, and the novel notion of combinatorial proof is introduced. Intuitively, a

proof is defined to be a homomorphism (lax form of fibration) between the cograph representing the axioms of the proof

and the cograph representing the provable formula. A completeness and soundness for combinatorial propositions is proved,

that is the formula B is true if and only if B has a combinatorial proof [12]. The explicit link between combinatorial proofs and
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Fig. 1. Graph (A) corresponds to the formula (p ∨ q⊥) ∨ ((q ∧ (r ∨ r⊥)) ∨ p⊥), (B) is the graph of (p ∨ p⊥) ∧ ((q ∨ q⊥) ∧ (r ∨ r⊥)) and (C) is the graph

of (p ∨ p⊥) ∧ ((r ∧ q⊥) ∨ (q ∧ r⊥)).

sequent calculus proofs has been addressed in [13], where a surjectivemap from a semanticallymotivated closure of sequent

calculus onto combinatorial proofs is provided. In this paper, we define another mapping for all combinatorial propositions,

which is different from the one proposed in [13] and it might be considered intuitively closer to [16] (see also [14]). Namely,

we construct a mapping (called G) of combinatorial proofs of classical propositional tautologies into sequent calculus (LK-)

proofs and viceversa (called F). Our map G shows that logical paths passing through formulas in LK-proofs [2,5,9] explicitly

define skew fibrations between graphs of formulas. G allows the definition of a class of “canonical" LK-proofs Xcan such that

FG(Xcan) = Xcan, and the derivation of a new proof of soundness and completeness for the combinatorial proof system.

2. Some basic definitions: formulas as cographs

In this section we associate formulas to cographs. We start with the observation that the connective ∧ creates a tighter

semantical link between two formulas than the connective ∨ and that the tree-like representation of a formula is not

sufficient to capture this fact. A bit more structure has to be added to the representation.

Graphs associated to formulas. Without loss of generality, we allow negations to act on atomic formulas only, and we denote

the formula ¬A with the symbol A⊥. Let us call atomic all occurrences of a propositional variable in a formula as well as all

occurrences of its negation. A formula A, of arbitrary logical complexity, is associated to a graph GA as follows: the vertices

of GA are all the atomic occurrences in A; the edges of GA are defined by induction on the subformulas of A as follows:

1. If A is of the form C ∧ B then GA is obtained by adding regular edges between any vertex in GC and any vertex in GB.

2. No other edge appears in the graph.

Some examples of graph associated to formulas are given in Fig. 1. In graph (A), there are two edges between q and r, r⊥
and they represent the fact that the variable q is linked with a connective ∧ to the subformula r ∨ r⊥ in the formula. No

other regular edge has been drawn since no other ∧ is present in the formula. For the figures (B) and (C) the construction is

done following the same idea.

Proposition 1. Given a formula A there is a unique graph GA associated to it.

Proof. By induction on the complexity of the formula A, the only interesting case is the treatment of the logical connective∧.

Suppose that ∧ is applied to two subformulas B and C. By induction we can construct two graphs GB, GC which are uniquely

associated to B and C. By definition we construct GA through a matching between GB and GC which links each node of GB to

all the nodes of GC . The links involve all nodes of GB and of GC . This ensures the uniqueness of the graph GA. �

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of edges. An edge connecting the vertices x and y

of G is denoted xy. The vertices x, y of xy are called extremes of the edge.

Definition 2. The class of cographs is the smallest class of simple graphs containing all one-vertex graphs, and closed under

the two following operations:

1. Complement: (V, E)c = (V, Ec), where for all x, y ∈ V , xy ∈ Ec iff xy �∈ E.

2. Disjoint union: (V, E) ⊕ (V ′, E′) = (V 	 V ′, E 	 E′).

As reported in Mohring’s survey [15], the following old observation rediscovered many times can be shown.

Proposition 3. Let G = (V, R) be a graph. G is a cograph if and only if the restriction of R to four vertices x, y, z, w never is the

graph whose edges are xy, yz, zw.

and based on it, one easily derives.
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