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In this paper we define and study finite state complexity of finite strings and infinite 
sequences as well as connections between these complexity notions to randomness and 
normality. We show that the finite state complexity does not only depend on the codes for 
finite transducers, but also on how the codes are mapped to transducers. As a consequence 
we relate the finite state complexity to the plain (Kolmogorov) complexity, to the process 
complexity and to prefix-free complexity. Working with prefix-free sets of codes we 
characterise Martin-Löf random sequences in terms of finite state complexity: the weak 
power of finite transducers is compensated by the high complexity of enumeration of 
finite transducers. We also prove that every finite state incompressible sequence is normal, 
but the converse implication is not true. These results also show that our definition of 
finite state incompressibility is stronger than all other known forms of finite automata 
based incompressibility, in particular the notion related to finite automaton based betting 
systems introduced by Schnorr and Stimm. The paper concludes with a discussion of open 
questions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Algorithmic Information Theory (AIT) [8,20,30,27] uses various measures of descriptional complexity to define and study 
various classes of “algorithmically random” finite strings or infinite sequences. The theory, based on the existence of a 
universal Turing machine (of various types), is very elegant and has produced many important results.

The incomputability of all descriptional complexities is an obstacle towards more “down-to-earth” applications of AIT 
(e.g. for practical compression). One possibility to avoid incomputability is to restrict the resources available to the universal 
Turing machine and the result is resource-bounded descriptional complexity [7]. Another approach is to restrict the compu-
tational power of the machines used, for example, using context-free grammars or straight-line programs instead of Turing 
machines [15,24,25,34].
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The first connections between finite state machine computations and randomness have been obtained for infinite se-
quences. Agafonov [1] proved that every subsequence selected from a (Borel) normal sequence by a regular language is also 
normal. Characterisations of normal infinite sequences have been obtained in terms of finite state gamblers, information 
lossless finite state compressors and finite state dimension: (a) a sequence is normal iff there is no finite state gambler that 
succeeds on it [35] (see also [6,17]) and (b) a sequence is normal iff it is incompressible by any information lossless finite 
state compressor [46]. Doty and Moser [18,19] used computations with finite transducers for the definition of finite state 
dimension of infinite sequences. The NFA-complexity of a string [15] can be defined in terms of finite transducers that are 
called in [15] “NFAs with advice”; the main problem with this approach is that NFAs used for compression can always be 
assumed to have only one state.

The definition of finite state complexity of a finite string x in terms of a computable enumeration of finite transducers and 
the input strings used by transducers which output x proposed in [10,11] is utilised to define finite state incompressible 
sequences. In Theorem 9 we prove that the finite state complexity lies properly between the plain complexity, as a lower 
bound, and the prefix-free complexity, as an upper bound, in the case that the enumeration of transducers considered is 
a universal one. Furthermore, while finite state incompressibility depends on the enumeration of finite transducers, many 
results presented here are independent of the chosen enumeration. For example, we prove that for every enumeration S
every C S -incompressible sequence is normal, Theorem 22. Furthermore, we can show that a sequence is Martin-Löf random 
iff it satisfies a strong incompressibility condition (parallel to the one for prefix-free Kolmogorov complexity) for every 
measure C S based on some perfect enumeration S . One can furthermore transfer this characterisation to the measure C S

for universal enumerations S .
Finally, we illustrate the dependence of finite state complexity on the enumeration of finite transducers. We prove that 

in every sequence there are infinitely many finite state complexity dips when the complexity is based on some exotic 
enumerations.

2. Notation

In this section we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .} we denote the set of natural 
numbers. Its elements will be usually denoted by letters i, . . . , n. By {0, 1}∗ we denote the set of all binary strings (words) 
with ε denoting the empty string; {0, 1}ω is the set of all (infinite) binary sequences. The length of a finite string x ∈ {0, 1}∗
is denoted by |x|. Sequences (infinite strings) are usually denoted by x, y; the prefix of length n of the sequence x is denoted 
by x � n; the nth element of x is denoted by x(n).

For w ∈ {0, 1}∗ and η ∈ {0, 1}∗ ∪{0, 1}ω let w ·η be their concatenation. This concatenation product extends in an obvious 
way to subsets L ⊆ {0, 1}∗ and B ⊆ {0, 1}∗ ∪ {0, 1}ω .

By w � u and w � y we denote that w is a prefix of u and y, respectively, and a prefix-free set L ⊂ {0, 1}∗ is a set with 
the property that for all strings p, q ∈ {0, 1}∗ , if p, pq ∈ L then p = pq.

3. Admissible transducers and their enumerations

We consider transducers which try to generate prefixes of infinite binary sequences from shorter binary strings and 
consider hence the following transducers: An admissible transducer is a deterministic transducer given by a finite set of 
states Q with starting state q0 and transition functions δ, μ with domain Q × {0, 1}, and say that the transducer on state q
and current input bit a transitions to q′ = δ(q, a) and appends w = μ(q, a) to the output produced so far.

One can generalise inductively the functions μ and δ by stating that μ(q, ε) = ε and μ(q, av) = μ(q, a) ·μ(δ(q, a), v) for 
states q and input strings av with a being one bit; similarly, δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v). The output T (v) of a 
transducer T on input-string v is then μ(q0, v).

Definition 1. A partially computable function S mapping binary strings to admissible transducers is called an enumera-
tion provided every admissible transducer T has a string σ ∈ dom(S); for a string σ ∈ dom(S), the admissible transducer 
assigned by S to σ is denoted as S(σ ) = T S

σ .
If the domain dom(S) is a prefix-free subset of {0, 1}∗ then we call S a prefix-free enumeration.

Next we introduce two subclasses of prefix-free enumerations, that is, enumerations S having a prefix-free domain 
dom(S).

Definition 2. (See Calude, Salomaa and Roblot [10,11].) A perfect enumeration S of all admissible transducers is a partially 
computable function with a prefix-free and computable domain mapping each binary string σ ∈ dom(S) to an admissible 
transducer T S

σ in an onto way.

Note that partially computable functions with a computable range (as considered here) have a computable inverse, that 
is, for each input y from the range, an algorithm finds, by searching in parallel over all possible inputs, an x which is 
mapped to y. It is known that there are perfect enumerations with a regular domain and that every perfect enumeration S
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