
Information and Computation 247 (2016) 217–234

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Existential second-order logic and modal logic with quantified 

accessibility relations

Lauri Hella 1, Antti Kuusisto ∗

Department of Mathematics and Statistics, University of Tampere, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2013
Received in revised form 4 July 2015
Available online 12 January 2016

Keywords:
Existential second-order logic
Modal logic
Finite model theory

This article investigates the role of arity of second-order quantifiers in existential second-
order logic, also known as �1

1 . We identify fragments L of �1
1 where second-order 

quantification of relations of arity k > 1 is (nontrivially) vacuous in the sense that each 
formula of L can be translated to a formula of (a fragment of) monadic �1

1 . Let polyadic 
Boolean modal logic with identity (PBML=) be the logic obtained by extending standard 
polyadic multimodal logic with built-in identity modalities and with constructors that 
allow for the Boolean combination of accessibility relations. Let �1

1 (PBML=) be the 
extension of PBML= with existential prenex quantification of accessibility relations and 
proposition symbols. The principal result of the article is that �1

1(PBML=) translates into 
monadic �1

1 . As a corollary, we obtain a variety of decidability results for multimodal logic. 
The translation can also be seen as a step towards establishing whether every property 
of finite directed graphs expressible in �1

1(FO2) is also expressible in monadic �1
1 . This 

question was left open in the 1999 paper of Grädel and Rosen in the 14th Annual IEEE 
Symposium on Logic in Computer Science.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Properties of existential second-order logic have been widely studied in finite model theory. Existential second-order 
logic captures the complexity class NP, and there exists a large body of results concerning the expressive power of different 
fragments of the logic (see e.g. [1,6,14,16,21]). However, there are several issues related to the expressivity of �1

1 that are 
not understood well. Most notably, Fagin’s spectrum arity hierarchy conjecture (see [8,9]) remains a longstanding difficult 
open problem in finite model theory. Fagin’s question is whether there exist sets of positive integers (spectra) definable by 
first-order sentences2 with predicates of maximum arity k + 1, but not definable by sentences with predicates of arity k.

In this article we investigate arity reduction of formulae of existential second-order logic: we identify fragments L of �1
1

where second-order quantification of relations of arity k > 1 is (nontrivially) vacuous in the sense that each formula of 
L can be translated to a formula of (a fragment of) monadic �1

1 , also known as ∃MSO. Our work is directly related to a 
novel perspective on modal correspondence theory, and our investigations lead to a variety of decidability results concerning 
multimodal logics over classes of frames with built-in relations. Our work also aims to provide a stepping stone towards a 
solution of an open problem of Grädel and Rosen posed in [15].
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The objective of modal correspondence theory (see [3]) is to classify formulae of modal logic according to whether they 
define elementary classes of Kripke frames.3 On the level of frames, modal logic can be considered a fragment of monadic 
�1

1, also known as ∀MSO, and therefore correspondence theory studies a special fragment of ∀MSO.
When a modal formula is inspected from the point of view of Kripke frames, the proposition symbols occurring in the 

formula are quantified universally; it is natural to ask what happens if one also quantifies some of the binary relation symbols
occurring in (the standard translation of) a modal formula. This question is investigated in [22], where the focus is on the 
expressivity of multimodal logic with universal prenex quantification of (some of) the binary and unary relation symbols 
occurring in a formula. A question that immediately suggests itself is whether there exists any class of multimodal frames 
definable in this logic, let us call it �1

1(ML), but not definable in monadic second-order logic MSO. The question can be 
regarded as a question of modal correspondence theory. Here, however, the correspondence language is MSO rather than 
FO. For further investigations that involve quantification of binary relations in modal logic, see for example [4,23].

In the current article we investigate two multimodal logics with existential second-order prenex quantification of accessi-
bility relations and proposition symbols, �1

1(PBML=) and �1
1(ML). The logic �1

1(ML) is the extension of ordinary multimodal 
logic with existential second-order prenex quantification of binary accessibility relations and proposition symbols. PBML=
is the logic obtained by extending standard polyadic4 multimodal logic by built-in identity modalities and by constructors 
that allow for the Boolean combination of accessibility relations (see Subsection 2.1). Obviously �1

1 (PBML=) is the extension 
of PBML= with existential second-order prenex quantification of accessibility relations and proposition symbols.

We warm up by showing that �1
1(ML) translates into monadic �1

1(MLE), which is the extension of multimodal logic with 
the global modality and existential second-order prenex quantification of only proposition symbols. The method of proof is 
based on the notion of a largest filtration (see [3] for the definition). We then push the method and show that �1

1 (PBML=)

translates into monadic �1
1 . Note that both of these results immediately imply that �1

1(ML) translates into ∀MSO and 
therefore show that MSO would be a somewhat dull correspondence language for correspondence theory of �1

1(ML).
The logic PBML= contains a wide variety of logics used in different applications of modal logic. It could be argued that 

{¬, ∪, ∩, ◦, ∗, �, E, D} is more or less the core collection of operations on binary relations used in extensions of modal logic 
defined for the purposes of applications. Here ¬, ∪, ∩, ◦, ∗ , � denote the complement, union, intersection, composition, 
transitive reflexive closure and converse operations, respectively. The symbols E and D denote the global modality and dif-
ference modality. Logics using some of these core operations include for example propositional dynamic logic PDL [10,17]
and its extensions, Boolean modal logic [11,25], description logics [2,19,27], modal logic with the global modality [13] and 
modal logic with the difference modality [5]. The operations ¬, ∪, ∩, E, D are part of PBML= . One of our principal motiva-
tions for studying PBML= is that the logic subsumes a large number of typical extensions of modal logic. Our translation 
from �1

1(PBML=) into ∃MSO gives as a direct corollary a wide range of decidability results for extensions of multimodal 
logic over various classes of Kripke frames with built-in relations; see Theorem 4.10 below.

In addition to applied modal logics, the investigations in this article are directly related to an interesting open problem 
concerning two-variable logics. Grädel and Rosen ask in [15] the question whether there exists any class of finite directed 
graphs that is definable in �1

1(FO2) but not in ∃MSO. Let BML= denote ordinary Boolean modal logic with a built-in 
identity relation, i.e., BML= is the restriction of PBML= to binary relations. Lutz, Sattler and Wolter show in the article 
[26] that BML= extended with the converse operator is expressively complete for FO2. Therefore, in order to prove that 
�1

1(FO2) ≤ ∃MSO, one would have to modify our translation from �1
1 (BML=) into ∃MSO such that it takes into account the 

possibility of using the converse operation. We have succeeded neither in this nor in identifying a �1
1(FO2) definable class 

of directed graphs that is not definable in ∃MSO. However, we find modal logic a promising framework for working on the 
problem.

This article is the journal version of the conference paper [18].

2. Preliminary definitions

In this section we discuss technical notions that occupy a central role in the rest of the article.

2.1. Syntax and semantics of �1
1(PBML=)

The semantics of PBML=—defined in detail below—is obtained by combining the semantics of Boolean modal logic with 
the standard generalization of Kripke semantics to polyadic modal contexts. Intuitively, Boolean modal logic is simply mul-
timodal logic where new modalities can be syntactically defined by forming Boolean combinations of accessibility relations.

Let V be a vocabulary containing relation symbols only. A V -model, or a model of the vocabulary V , is an ordinary first-
order model (see [7]) that gives an interpretation to exactly all the symbols in V . We use this notion of a model in both 

3 It is well known that if a class of Kripke frames is definable by a modal formula, then the class is definable by a set of FO formulae iff it is definable by 
a single FO formula. See [12] for example. Therefore it makes no difference here whether the term “elementary” is taken to mean definability by a single 
first-order formula or definability by a set of first-order formulae.

4 Modal logics with accessibility relations of arities greater than two are called polyadic. See Section 2.1 for the related definitions.
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