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Language equivalence and inclusion can be checked coinductively by establishing a (bi)sim-
ulation on suitable deterministic automata. In this paper we present an enhancement of 
this technique called (bi)simulation-up-to. We give general conditions on language opera-
tions for which bisimulation-up-to is sound. These results are illustrated by a large number 
of examples, giving new proofs of classical results such as Arden’s rule, and involving the 
regular operations of union, concatenation and Kleene star as well as language equations 
with complement and intersection, and shuffle (closure).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The set of all languages over a given alphabet can be turned into an (infinite) deterministic automaton. By the coinduction
principle, any two languages that are bisimilar as states in this automaton are equal. The typical way to show that two 
languages x and y are bisimilar is by exhibiting a bisimulation, a relation on languages satisfying certain properties, which 
contains the pair (x, y). Indeed, this is the basis of a practical coinductive proof method for language equality [30], which 
has, for example, been applied in effective procedures for checking equivalence of regular languages [8,19,21,30].

In this paper we present bisimulation up to congruence, in the context of languages and automata. This is an enhancement 
of bisimulation originally stemming from process theory [27,33]. In order to prove bisimilarity of two languages, instead of 
showing that they are related by a bisimulation, one can show that they are related by a bisimulation-up-to, which in many 
cases yields smaller, easier and more elegant proofs. As such, we introduce a proof method which improves on the more 
classical coinductive approach based on bisimulations.

Bisimulation-up-to(-congruence) techniques essentially make use of the underlying (algebraic) structure induced on (the 
automaton of) languages by the operations and expressions under consideration. In this paper we will first focus on lan-
guages presented by the regular operations of union, concatenation and Kleene star. We will exemplify our coinductive proof 
method based on bisimulation-up-to by novel proofs of several classical results such as Arden’s rule and the soundness of 
the axioms of Kleene algebra. This introduces the main ingredients, and the practical use of the proof technique.
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Our aim however is to deal with a wide variety of operations on languages. To this end we introduce a general format 
of behavioural differential equations, based on a similar format introduced for streams [20,32] (called stream GSOS in [14]). In 
the current paper we prove that for any operator defined in this format, the associated bisimulation-up-to techniques are 
sound. We then apply these results by considering language equations involving intersection and complement, and show 
the usefulness and versatility of the techniques by giving a full coinductive proof of the fact that two particular context-free 
languages defined in terms of language equations, that of palindromes and that of non-palindromes, indeed form each 
other’s complement. Moreover we give a number of example proofs for the operations of shuffle and shuffle closure.

While bisimilarity can be used to prove equality, the notion of similarity can be used to prove language inclusion. We 
will introduce simulation-up-to techniques, and show that these are sound whenever the operations under consideration 
adhere to the above format of behavioural differential equations, and additionally satisfy a monotonicity condition. While 
language inclusion x ⊆ y can of course be reduced to equality x + y = y, it turns out that in practical cases it can be 
much more convenient and efficient to use simulation-up-to directly, instead of using this reduction and prove equality by 
bisimulation-up-to.

Behavioural differential equations have been studied extensively, mostly in the context of streams [14,20,32]. The format 
for language operations which we introduce in this paper, is an extension of the format for stream operations introduced 
in [14,20]. In [20] it is shown that the operations which can be given by behavioural differential equations are precisely the 
causal functions. For an operation f on streams, f is causal if for any n > 0: the first n elements of f (σ1, . . . , σn) depend 
only on the first n elements of each argument σ1, . . . , σn . This notion has a natural counterpart for languages, and we show 
that indeed the correspondence holds in our case as well. This gives an additional semantic characterization of a large class 
of operations for which bisimulation-up-to techniques are sound. A similar result is in [9], where causality is taken as a 
sufficient condition for soundness of up-to techniques for streams.

The main contribution of this paper is the presentation of the coinductive proof technique of (bi)simulation-up-to in the 
context of languages and automata, together with a large number of examples, providing an accessible explanation of these 
techniques requiring little background knowledge from the reader. An earlier version of this work appeared as a conference 
paper [29]. With respect to [29] we have the following new contributions. First, the present paper is entirely self-contained, 
in contrast to [29] which relies on the abstract theory of coalgebraic bisimulation-up-to [28]. Second, we add here a number 
of new examples, for other operations such as shuffle. Third, we introduce the notion of simulation-up-to. Finally the result 
stating that operations adhering to the format of behavioural differential equations are precisely the causal functions, is new 
in the context of languages.

The outline of this paper is as follows. In Section 2 we recall the notions of bisimulation and coinduction in the context 
of languages and automata. Then in Section 3 we present bisimulation-up-to for the regular operations. In Section 4 we 
discuss bisimulation-up-to for other operations, by introducing a format for which bisimulation-up-to is guaranteed to be 
sound and providing a number of examples. In Section 5 we introduce simulation-up-to techniques for language inclusion. 
In Section 6 we prove the correspondence between behavioural differential equations and causal functions. In Section 7 we 
place our work in the context of coalgebraic theory and discuss related work, and finally in Section 8 we conclude.

2. Languages, automata, bisimulations and coinduction

Throughout this paper we assume a fixed alphabet A, which is simply a (possibly infinite) set. We denote by A∗ the set 
of words, i.e., finite concatenations of elements of A; we denote the empty word by ε, and the concatenation of two words 
w and v by w v . The set of languages over A is given by P(A∗), and ranged over by x, y, z. We denote the empty language 
by 0 and the language {ε} by 1. Moreover when no confusion is likely to arise, we write a to denote the language {a}, for 
alphabet letters a ∈ A.

A (deterministic) automaton over A is a triple (S, o, δ) where S is a set of states, o : S → {0, 1} is an output function, and 
δ : S × A → S is a transition function. Notice that S is not necessarily finite, and there is no initial state. We say a state s ∈ S
is final or accepting if o(s) = 1. For each automaton (S, o, δ) there is a function l : S → P(A∗) which assigns to each state 
s ∈ S a language, inductively defined as follows:

ε ∈ l(s) iff o(s) = 1 aw ∈ l(s) iff w ∈ l(δ(s,a))

The classical definition of bisimulation [22,26] concerns labelled transition systems, which, in contrast to deterministic au-
tomata, do not feature output and may have a non-deterministic branching behaviour.2 We will base ourselves on a different 
notion of bisimulation specific to deterministic automata, which is an instantiation of the general coalgebraic definition of 
bisimulation (see Section 7).

Definition 2.1. Let (S, o, δ) be a deterministic automaton. A bisimulation is a relation R ⊆ S × S such that for any (s, t) ∈ R:

1. o(s) = o(t), and
2. for all a ∈ A : (δ(s, a), δ(t, a)) ∈ R .

2 In fact, the standard reference [26] introduces bisimulations for automata rather than transition systems, and Theorem 2.2 appears already there.
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