
Information and Computation 237 (2014) 1–11

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Language equivalence of probabilistic pushdown automata

Vojtěch Forejt a, Petr Jančar b,∗, Stefan Kiefer a, James Worrell a

a Department of Computer Science, University of Oxford, UK
b Dept. of Computer Science, FEI, Techn. Univ. Ostrava, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2013
Available online 28 April 2014

Keywords:
Pushdown systems
Language equivalence
Probabilistic systems

We study the language equivalence problem for probabilistic pushdown automata (pPDA)
and their subclasses. We show that the problem is interreducible with the multiplicity
equivalence problem for context-free grammars, the decidability of which has been open
for several decades. Interreducibility also holds for pPDA with one control state.
In contrast, for the case of a one-letter input alphabet we show that pPDA language
equivalence (and hence multiplicity equivalence of context-free grammars) is in PSPACE
and at least as hard as the polynomial identity testing problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Equivalence checking is the problem of determining whether two systems are semantically identical. This is an important
question in automated verification and, more generally, represents a line of research that can be traced back to the inception
of theoretical computer science. A great deal of work in this area has been devoted to the complexity of language equivalence
for various classes of infinite-state systems based on grammars and automata, such as basic process algebras (BPA) and
pushdown processes. We mention in particular the landmark result showing the decidability of language equivalence for
deterministic pushdown automata (dPDA) [24]; the problem is well-known to be undecidable for general (nondeterministic)
PDA.

An input word determines a unique computation of a dPDA, whereas the computation of a PDA on an input word can
have many branches. In this paper we are concerned with probabilistic pushdown automata (pPDA), where we only allow
probabilistic branching. Here two pPDA are language equivalent if they accept each word with the same probability. The
decidability of the language equivalence problem for pPDA is still open, even in the case with no ε-transitions, to which we
restrict ourselves in this paper.

The language theory of probabilistic pushdown automata has been studied in [1], where their equivalence with stochastic
context-free grammars (CFGs) is proved. There is also a growing body of work concerning the complexity of model checking
and equivalence checking of probabilistic pushdown automata, probabilistic one-counter machines and probabilistic BPA
(see, e.g., [5,10,11,13]).

It was shown recently in [17] that the language equivalence problem for probabilistic visibly pushdown automata is
logspace equivalent to the problem of polynomial identity testing, that is, determining whether a polynomial presented as an
arithmetic circuit is identically zero. The latter problem is known to be in coRP.

The contribution of this paper is the following. For general pPDA we show that language equivalence is polynomially
interreducible with multiplicity equivalence of CFGs. The latter problem asks whether in two given grammars every word
has the same number of derivation trees. The decidability question for multiplicity equivalence is a long-standing open

* Corresponding author.

http://dx.doi.org/10.1016/j.ic.2014.04.003
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://dx.doi.org/10.1016/j.ic.2014.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.04.003&domain=pdf

2 V. Forejt et al. / Information and Computation 237 (2014) 1–11

problem in theory of formal languages [21,19,18,15]. Our construction works by turning nondeterministic branches of a
CFG into carefully designed probabilistic transitions of a pPDA, and vice versa. A consequence of this reduction is that the
equivalence problem for pPDA is polynomially reducible to the equivalence problem for pPDA with one control state. We
note that a corresponding polynomial reduction from the general case to the one-state case would be a breakthrough in the
case of deterministic PDA since one-state dPDA equivalence is known to be in P (see [14], or [8] for the best known upper
bound).

We further show that in the case of a one-letter input alphabet the language equivalence problem is decidable in poly-
nomial space. We use the fact that in this case the problem reduces to comparing distributions of termination probabilities
within i steps (i = 0,1,2, . . .). By using an equation system for generating functions we reduce the latter problem to the
decision problem for the existential fragment of the theory of the reals (which is known to be in PSPACE but not known
to be PSPACE-complete). Moreover, we show that the hardness result from [17] carries over; i.e., language equivalence for
one-letter pPDA is at least as hard as the polynomial identity testing. Very recent work [7] considers (non)probabilistic dPDA
with a one-letter input alphabet, allowing for ε-transitions. They show, among other results, that the equivalence problem
for such dPDA is P-complete.

As a byproduct of the mentioned results, we obtain that multiplicity equivalence of CFG with one-letter input alphabet
is in PSPACE. The previously known decidability result, which is based on elimination theory for systems of polynomial
equations, did not provide any complexity bound, see [19,18,15] and the references therein.

2. Definitions and results

By N,Q,R we denote the set of nonnegative integers, the set of rationals, and the set of reals, respectively. We denote
the set of words over a finite alphabet Σ by Σ∗ . We denote the empty word by ε and write Σ+ = Σ∗ � {ε}. By |w| we
denote the length of w ∈ Σ∗ , so that |ε| = 0. For k ∈ N we put Σ≤k = {w ∈ Σ∗; |w| ≤ k}.

Given a finite or countable set A, a probability distribution on A is a function d : A → [0,1] ∩Q such that
∑

a∈A d(a) = 1.
The support of a probability distribution d is the set support(d) := {a ∈ A : d(a) > 0}. The set of all probability distributions
on A is denoted by D(A). A Dirac distribution is one whose support is a singleton.

2.1. Probabilistic labelled transition systems

A probabilistic labelled transition system (pLTS) is a tuple S = (S,Σ,−→), where S is a finite or countable set of states, Σ is a
finite input alphabet, whose elements are also called actions, and −→ ⊆ S ×Σ ×D(S) is a transition relation satisfying that for
each pair (s,a) there is at most one d such that (s,a,d) ∈ −→. We write s a−→ d to say that (s,a,d) ∈ −→, and s

a,x−−→ s′ when
there is s a−→ d such that d(s′) = x. We also write s −→ s′ to say that there exists a transition s a−→ d with s′ ∈ support(d). We
say that an action a is enabled in a state s ∈ S if s a−→ d for some d; otherwise a is disabled in s. A state s ∈ S is terminating if
no action is enabled in s.

Let S = (S,Σ,−→) be a pLTS. An execution on a word a1a2 . . .ak ∈ Σ∗ , starting in a given state s0, is a finite sequence
s0

a1,x1−−−→ s1
a2,x2−−−→ s2 · · · ak,xk−−−→ sk . Given s0 and a1a2 . . .ak , the probability of such an execution is

∏k
i=1 xi .

2.2. Probabilistic pushdown automata

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q ,Γ,Σ, ↪→) where Q is a finite set of control states, Γ is a
finite stack alphabet, Σ is a finite input alphabet, and ↪→ ⊆ Q ×Γ ×Σ ×D(Q × Γ ≤2) is a finite set of rules. We require that

for each (q, X,a) ∈ Q × Γ × Σ there be at most one distribution d such that (q, X,a,d) ∈ ↪→. We write qX
a

↪−→ d to denote
(q, X,a,d) ∈ ↪→; informally speaking, in the control state q with X at the top of the stack we can perform an a-transition
to the distribution d.

A configuration of a pPDA � = (Q ,Γ,Σ, ↪→) is a pair (q, β) ∈ Q × Γ ∗; we often write qβ instead of (q, β). We write

qX
a,x

↪−→ rβ if qX
a

↪−→ d where d(rβ) = x.
When speaking of the size of �, we assume that the probabilities in the transition relation are given as quotients of

integers written in binary.

A pPDA � = (Q ,Γ,Σ, ↪→) generates a pLTS S(�) = (Q × Γ ∗,Σ,−→) as follows. For each β ∈ Γ ∗ , a rule qX
a

↪−→ d of �

induces a transition qXβ
a−→ d′ in S(�), where d′ ∈ D(Q × Γ ∗) is defined by d′(pαβ) = d(pα) for all p ∈ Q and α ∈ Γ ≤2

(and thus d′ is 0 elsewhere). We note that all configurations with the empty stack, written as pε or just as p, are terminating
states in S(�). (Later we will assume that the empty-stack configurations are the only terminating states.)

The probability that � accepts a word w ∈ Σ∗ from a configuration qα is the sum of the probabilities of all executions
on w , starting in qα in S(�), that end in a configuration with the empty stack. We denote this probability by P�

qα(w).
A probabilistic basic process algebra (pBPA) � is a pPDA with only one control state. In this case we often write just α

instead of qα for a configuration.

Download English Version:

https://daneshyari.com/en/article/426745

Download Persian Version:

https://daneshyari.com/article/426745

Daneshyari.com

https://daneshyari.com/en/article/426745
https://daneshyari.com/article/426745
https://daneshyari.com

