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We investigate the descriptional complexity and decidability of obliviousness for two-
way finite automata. In particular, we consider the simulation of two-way deterministic
finite automata (2DFAs) by oblivious 2DFAs, the simulation of oblivious 2DFAs by sweeping
2DFAs and one-way nondeterministic finite automata (1NFAs) as well as the simulation of
sweeping 2DFAs by 1NFAs. In all cases exponential lower bounds on the number of states
are obtained for languages over an alphabet with at most four letters. Finally, a procedure
for deciding obliviousness of an arbitrary 2DFA is given and, moreover, the problem is
shown to be PSPACE-complete.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Finite automata are used in several applications and implementations in software engineering, programming languages
and other practical areas in computer science. They are one of the first and most intensely investigated computational mod-
els. Since deterministic or nondeterministic as well as one-way or two-way finite automata are all well known to capture
the regular languages, it is natural to investigate their descriptional complexity [10], that is, the succinctness of the repre-
sentation of a regular language by the different types of automata in order to optimize the space requirements. For example,
it is well known that nondeterministic one-way finite automata (1NFAs) can offer exponential savings in space compared
with deterministic one-way finite automata (1DFAs). More precisely, given some n-state 1NFA one can always construct a
language-equivalent 1DFA with at most 2n states [31]. Later it was shown independently by several authors that this expo-
nential upper bound is the best possible, that is, for every n there is an n-state 1NFA which cannot be simulated by any 1DFA
with strictly less than 2n states [23,25,27]. The state complexity of the simulation of two-way by one-way finite automata
has been solved by establishing a tight bound of
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)
for the simulation of two-way deterministic as well as nondetermin-

istic finite automata by 1NFAs [15]. In the same paper tight bounds of n(nn − (n − 1)n) and
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shown for two-way deterministic and two-way nondeterministic finite automata simulations by 1DFAs. The bounds reveal
that two-way head motion is a very powerful resource with respect to the number of states. Interestingly, when simulating
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two-way devices by 1NFAs, it does not matter whether the two-way device is nondeterministic or not. From this point of
view, two-way head motion can compensate for nondeterminism.

Nevertheless, challenging problems are still open. The question of the costs for trading two-way head motion for nonde-
terminism, that is, the costs for simulating (two-way) NFAs by 2DFAs is unanswered for decades. It was raised by Sakoda
and Sipser [32]. While from standard simulations we can obtain an exponential upper bound, the best lower bound currently
known is Ω(n2). This result was proved by Chrobak [4], evaluating the costs of unary automata simulations, as also sug-
gested by Sipser [36]. It turned out that the unary case is essentially different from the general one. The costs of the unary
2DFAs and 1NFA to 1DFA simulation both reduce to the bound eΘ(

√
n·ln n) [4]. This result was generalized by sophisticated

studies showing that the cost of unary 2NFA to 1DFA simulation is the same [24]. Furthermore, again by Chrobak [4], the
Sakoda–Sipser problem for 1NFAs has been solved for the unary case. The tight bound in the order of magnitude is Θ(n2).
However the tight bound for the simulation of 2NFAs by 2DFAs is still open, even in the unary case. The best known upper
bound is of order 2O (ln2 n) [6]. A tightness proof of such a bound (or any other superpolynomial lower bound) should imply
the separation between the classes L and NL, thus solving another long-standing open problem [7]. Other interesting con-
nections between the problem of Sakoda and Sipser and the question whether L equals NL have been proved by Berman
and Lingas [1] and, recently, by Kapoutsis [16,18].

In order to attack and to solve the problem of Sakoda and Sipser at least for subclasses, sweeping automata, that is,
2DFAs that may halt and change their head direction only at the endmarkers, are investigated. Sipser [36] found a language
over an alphabet of size 2n2

, that is accepted by an n-state 1NFA but any equivalent sweeping 2DFA needs at least 2n states.
The result has been improved to a binary alphabet [21]. Using again a growing alphabet it has been shown that there is an
O (n)-state 2DFA such that any equivalent sweeping 2DFA has at least 2n states [2,26,34].

Each sweeping automaton can be converted into an equivalent one that makes no stationary moves and performs a con-
stant number of sweeps over the input only. The cost for this conversion is a quadratic number of states. However, such a
normalized sweeping automaton has the same trajectory of the head movement on all inputs of the same length, it is said
to be data-independent or oblivious. Relaxing the sweeping condition and restricting a general 2DFA to be oblivious yields a
new type of two-way finite automata that is a generalization of normalized sweeping automata and a restriction of general
2DFAs. The notion of oblivious Turing programs was introduced in [28]. Later tis concept was used to simulate Turing ma-
chines by logical networks [30,33]. Moreover, obliviousness was studied in the context of parallel random access machines
(PRAMs), in order to obtain characterizations of polynomial size, poly-logarithmic depth unbounded and bounded fan-in cir-
cuit classes by variants of PRAMs with oblivious or non-oblivious read- and write-structures [20]. Petersen [29] showed that
obliviousness is no restriction for multi-head one-counter automata, multi-head non-erasing stack automata, and multi-head
stack automata. The same is obviously true for one-head finite automata. Oblivious multi-head finite automata are studied
as well [9,11].

The known results on the simulation of 1NFAs by sweeping 2DFAs have been extended to oblivious 2DFAs as follows [12].
It is shown that there is an O (n)-state 1NFA such that every equivalent oblivious 2DFA has at least 2n states. Relaxing the
obliviousness condition in such a way that a sublinear number of different trajectories is allowed, the result is that there
exists an O (n)-state 1NFA such that any equivalent sublinearly oblivious 2DFA still needs at least 2Ω(n) states. Again, these
results are for a growing alphabet of size 2n2

.
Here we further investigate oblivious two-way deterministic finite automata. Our main interest is the decidability and

descriptional power of obliviousness, that is, the question to what extent oblivious machines can represent regular languages
more succinctly than sweeping machines or one-way automata and, vice versa, how many states are necessary for oblivious
machines to simulate general deterministic two-way finite automata. In particular, we consider the simulation of 2DFAs by
oblivious 2DFAs, the simulation of oblivious 2DFAs by sweeping 2DFAs and 1NFAs as well as the simulation of sweeping
2DFAs by 1NFAs. In all cases exponential lower bounds on the number of states are obtained for languages over an alphabet
with at most four letters. Finally, it is shown that obliviousness is decidable for 2DFAs and the problem is shown to be
PSPACE-complete.

2. Oblivious two-way finite automata

We denote the set of non-negative integers by N. We write Σ∗ for the set of all words over the finite alphabet Σ . The
empty word is denoted by λ. The length of a word w is denoted by |w|.

A two-way finite automaton is a finite automaton having a single read-only input tape whose inscription is the input
word in between two endmarkers. The head of the automaton can move freely on the tape but not beyond the endmarkers.
More precisely, a deterministic two-way finite automaton (2DFA) is a system M = 〈Q ,Σ, δ,�,�,q0, F 〉, where Q is the finite
set of internal states, Σ is the set of input symbols, �/∈ Σ and �/∈ Σ are the left and right endmarkers, q0 ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, δ is the transition function mapping Q × (Σ ∪ {�,�}) to Q × {−1,0,1}, where
1 means to move the head one square to the right, −1 means to move it one square to the left, and 0 means to keep the
head on the current square. Whenever (q′,d) = δ(q,a) is defined, then d ∈ {0,1} if a =�, and d ∈ {−1,0} if a =�.

A 2DFA M starts with its head on the left endmarker. It halts when the transition function is not defined for the current
situation. A computation can also enter an infinite loop. However, the input is accepted if and only if M halts in an accepting
state.
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