
Information and Computation 235 (2014) 36–69

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Safe typing of functional logic programs with opaque patterns
and local bindings ✩

Francisco J. López-Fraguas ∗, Enrique Martin-Martin, Juan Rodríguez-Hortalá

Departamento de Sistemas Informáticos y Computación, Facultad de Informática de la Univ. Complutense de Madrid,
C/ Prof. José García Santesmases, s/n. 28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 January 2014

Keywords:
Functional-logic programming
Type systems
Opaque patterns
Let bindings

Type systems are widely used in programming languages as a powerful tool providing
safety to programs. Functional logic languages have inherited Damas–Milner type system
from their functional part due to its simplicity and popularity. In this paper we address
a couple of aspects that can be subject of improvement. One is related to a problematic
feature of functional logic languages not taken under consideration by standard systems:
it is known that the use of opaque HO patterns in left-hand sides of program rules may
produce undesirable effects from the point of view of types. We re-examine the problem,
and propose two variants of a Damas–Milner-like type system where certain uses of HO
patterns (even opaque) are permitted while preserving type safety. The considered formal
framework is that of programs without extra variables and using let-rewriting as reduction
mechanism. The other aspect addressed is the different ways in which polymorphism of
local definitions can be handled. At the same time that we formalize the type system, we
have made the effort of technically clarifying the overall process of type inference in a
whole program.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Type systems for programming languages are an active area of research, no matter which paradigm is considered. In
the case of functional programming, most type systems have arisen as extensions of Damas–Milner’s [1], for its remarkable
simplicity and good properties (decidability, existence of principal types, possibility of type inference, type safety results . . . ).
Functional logic languages [2–4], in their practical side, have inherited almost directly Damas–Milner’s types. In principle,
most of the type extensions proposed for functional programming could be also incorporated to functional logic languages
(e.g. this has been partially done for type classes [5–7]). However, if types are meant to be not only a decoration but
are devised to provide safety to programs, then we must ensure that the adopted system has indeed good properties. In
this paper we tackle a couple of orthogonal aspects of existing FLP systems that are problematic or not well covered by
straightforward adaptations of Damas–Milner typing. One is the presence of so called higher order (HO) patterns in programs,
an expressive feature allowed in some systems and for which a sensible semantics exists [8]; however, it is known that
unrestricted use of HO patterns leads to type unsafety, as recalled below. The second is the degree of polymorphism assumed
for local pattern bindings, a matter with respect to which existing FP or FLP systems vary greatly and that is usually not
well documented, not to say formalized.

✩ This work has been partially supported by the Spanish projects TIN2008-06622-C03-01, S2009TIC-1465 and UCM-BSCH-GR35/10-A-910502.

* Corresponding author.
E-mail addresses: fraguas@sip.ucm.es (F.J. López-Fraguas), emartinm@fdi.ucm.es (E. Martin-Martin), juanrh@fdi.ucm.es (J. Rodríguez-Hortalá).

0890-5401/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ic.2014.01.004

http://dx.doi.org/10.1016/j.ic.2014.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:fraguas@sip.ucm.es
mailto:emartinm@fdi.ucm.es
mailto:juanrh@fdi.ucm.es
http://dx.doi.org/10.1016/j.ic.2014.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.01.004&domain=pdf


F.J. López-Fraguas et al. / Information and Computation 235 (2014) 36–69 37

t ∈ Pat Set of patterns Page 39

e ∈ Exp Set of expressions Page 39

fv(e) Set of free variables Page 39

C One-hole context Page 39

ftv(σ ) Set of free type variables Page 39

θ ∈ PSub Data substitution Page 39

π ∈ TSub type substitution Page 40

A Set of assumptions Page 40

⊕ Union of set of assumptions Page 40

vran(π) Variable range of a substitution Page 40

� Generic instance relation Page 40

�var Variant relation Page 40

� Basic typing relation Fig. 5, page 40

wtA(e) Well-typed expression wrt. � Page 41

�• Extended typing relation Fig. 7, page 41

Opaque variable Definition 1, page 41

critVarA(e) Critical variables of e Definition 2, page 41

wtA(P) Well-typed program Definition 3, page 42

Ψ (e) Elimination of compound patterns Fig. 8, page 43

→l Let-rewriting relation Fig. 9, page 43

� Basic type inference relation Fig. 10, page 45

�• Extended type inference relation Fig. 11, page 45

Π•
A,e Typing substitution Definition 4, page 46

B(A,P) Type inference of a program Definition 5, page 46

e◦ ∈ Exp◦ Simple expressions Page 49

�◦ Relaxed typing relation Fig. 13, page 50

wt◦
A(P) Well-typed relaxed program Page 51

Fig. 1. Summary of notation.

The rest of the paper is organized as follows. Fig. 1 presents the summary of notation. Sections 1.1 and 1.2 make an
introductory discussion to the two mentioned aspects. Section 2 contains some preliminaries about FL programs and types.
In Section 3 we expose the type system and prove its soundness wrt. let-rewriting, an operational reduction semantics for
FL programs presented in [9]. Section 4 contains a type inference relation, which lets us find the most general type of
expressions. Section 5 presents a method to infer types for programs. In Section 6 we examine some practical limitations
of the type system and propose a variant to overcome them. In Section 7 we further discuss some other aspects of the two
presented type systems. Finally, Section 8 contains some conclusions and points to future work.

1.1. Higher order patterns

In our setting patterns appear in the left-hand side of rules or let-bindings. Some of them can be HO patterns, if they
contain partial applications of function or constructor symbols. The use of HO patterns has practical interest—see e.g. [8,10,
11] for illustrating examples—and is natural in a setting having an intensional view of functions, where different descriptions
of the same ‘extensional’ function can be observably distinguished.1 This somehow non-typical behavior does not emerge by
the allowance of HO patterns itself; as it is known [9], it stems from the mere combination of HO-functions, lazy evaluation
and call-time choice semantics for non-determinism, a cocktail which is present in current FLP systems, whether or not they
support HO-patterns. However, HO patterns can be a source of problems from the point of view of the types. In particular,
it was shown in [13] that unrestricted use of HO patterns leads to loss of type preservation, an essential property for a type
system expressing that evaluation does not change types. The following is a crisp example of the problem.

Example 1 (Polymorphic casting). (See [14].) Consider the program consisting of the rules snd XY → Y , and true X → X ,
and false X → false, with the usual types inferred by a direct adaptation of the classical Damas–Milner algorithm. We can
extend the program with the functions unpack(snd X) → X and cast X → unpack(snd X), whose inferred types will be
∀α,β.(α → α) → β and ∀α, β.α → β respectively. Then it is clear that the expression and(cast 0) true is well-typed,
because cast 0 has type bool (in fact it has any type), but if we reduce that expression using the rules of cast and unpack
the resulting expression and 0 true is ill-typed because 0 has not type bool, as is required by the context.

1 By saying that e, e′ represent the same ‘extensional’ function we mean that e x and e′ x behave the same, for each argument x. We remark that some
authors [12] have suggested the possibility of other notions of extensionality for which FLP languages would respect extensionality.



Download English Version:

https://daneshyari.com/en/article/426764

Download Persian Version:

https://daneshyari.com/article/426764

Daneshyari.com

https://daneshyari.com/en/article/426764
https://daneshyari.com/article/426764
https://daneshyari.com

